河北省沧州市名校2024年数学八年级下册期末教学质量检测模拟试题含解析_第1页
河北省沧州市名校2024年数学八年级下册期末教学质量检测模拟试题含解析_第2页
河北省沧州市名校2024年数学八年级下册期末教学质量检测模拟试题含解析_第3页
河北省沧州市名校2024年数学八年级下册期末教学质量检测模拟试题含解析_第4页
河北省沧州市名校2024年数学八年级下册期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省沧州市名校2024年数学八年级下册期末教学质量检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.方程=1的解的情况为()A.x=﹣ B.x=﹣3 C.x=1 D.原分式方程无解2.下列各组数中,以它们为边长的线段不能构成直角三角形的是()A.1,, B.3,4,5 C.5,12,13 D.2,2,33.如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为S2,中间一张正方形纸片的面积为S3,则这个平行四边形的面积可以表示为()A.4S1 B.4S2 C.4S2+S3 D.2S1+8S34.用反证法证明“四边形中至少有一个角是钝角或直角”,则应先假设()A.至少有一个角是锐角 B.最多有一个角是钝角或直角C.所有角都是锐角 D.最多有四个角是锐角5.甲、乙两人分别骑自行车和摩托车从A地到B地,两人所行驶的路程与时间的关系如图所示,下面的四个说法:甲比乙早出发了3小时;乙比甲早到3小时;甲、乙的速度比是5:6;乙出发2小时追上了甲.其中正确的个数是A.1个 B.2个 C.3个 D.4个6.点A、B、C、D在同一平面内,从AB∥CD,AB=CD,AD∥BC这三条件中任选两个能使四边形ABCD是平行四边形的选法有()A.1种 B.2种 C.3种 D.以上都不对7.已知某四边形的两条对角线相交于点O.动点P从点A出发,沿四边形的边按A→B→C的路径匀速运动到点C.设点P运动的时间为x,线段OP的长为y,表示y与x的函数关系的图象大致如图所示,则该四边形可能是()A. B. C. D.8.平行四边形两个内角的度数的比是1:2,则其中较小的内角是()A. B. C. D.9.已知的三边,,满足,则的面积为()A. B. C. D.10.如图,数轴上点A表示的数为()A. B. C. D.π11.下列图形既是中心对称图形又是轴对称图形的是()A. B. C. D.12.下列点在直线y=-x+1上的是()A.(2,-1) B.(3,3) C.(4,1) D.(1,2)二、填空题(每题4分,共24分)13.如图,正方形OMNP的一个顶点与正方形ABCD的对角线交点O重合,且正方形ABCD、OMNP的边长都是4cm,则图中重合部分的面积是_____cm1.14.在Rt△ABC中,∠C=90°,若a=6,b=8,则c=________.15.以正方形ABCD的边AD作等边△ADE,则∠BEC的度数是_____.16.如图,把边长为1的正方形ABCD绕顶点A逆时针旋转30°到正方形AB′C′D′,则它们的公共部分的面积等于_____.17.如图,在□ABCD中,对角线AC、BD相交于点O,AB=OB,E为AC上一点,BE平分∠ABO,EF⊥BC于点F,∠CAD=45°,EF交BD于点P,BP=,则BC的长为_______.18.如图,以位似中心,扩大到,各点坐标分别为(1,2),(3,0),(4,0)则点坐标为_____________.三、解答题(共78分)19.(8分)在甲、乙两个不透明的口袋中装有质地、大小相同的小球,甲袋中有2个白球,1个黄球和1个红球:乙袋中装有1个白球,1个黄球和若干个红球,从乙盒中仼意摸取一球为红球的概率是从甲盒中仼意摸取一球为红球的概率的2倍.(1)乙袋中红球的个数为.(2)若摸到白球记1分,摸到黄球记2分,摸到红球记0分,小明从甲、乙两袋中先后分别任意摸取一球,请用树状图或列表的方法求小明摸得两个球得2分的概率.20.(8分)21.(8分)(1);(2).22.(10分)一家公司准备招聘一名英文翻译,对甲、乙和丙三名应试者进行了听、说、读、写的英语水平测试,他们各项的成绩(百分制)如下:应试者听说读写甲82867875乙73808582丙81828079(1)如果这家公司按照这三名应试者的平均成绩(百分制)计算,从他们的成绩看,应该录取谁?(2)如果这家公司想招一名口语能力较强的翻译,听、说、读、写成绩按照3∶4∶2∶1的权重确定,计算三名应试者的平均成绩(百分制),从他们的成绩看,应该录取谁?(3)如果这家公司想招一名笔译能力较强的翻译,听、说、读、写成绩按照1∶2∶3∶4的权重确定,计算三名应试者的平均成绩(百分制).从他们的成绩看,应该录取谁?23.(10分)如图,直角坐标系xOy中,一次函数y=kx+b的图象l1分别与x轴,y轴交于A(15,0),B两点,正比例函数y=x的图象l2与l1交于点C(m,3).(1)求m的值及l1所对应的一次函数表达式;(2)根据图象,请直接写出在第一象限内,当一次函数y=kx+b的值大于正比例函数y=x的值时,自变量x的取值范围.24.(10分)如图1,在中,,,、分别是、边上的高,、交于点,连接.(1)求证:;(2)求的度数;(3)如图2,过点作交于点,探求线段、、的数量关系,并说明理由.25.(12分)如图,平行四边形ABCD的边AB在x轴上,点C的坐标为(﹣5,4),点D在y轴的正半轴上,经过点A的直线y=x﹣1与y轴交于点E,将直线AE沿y轴向上平移n(n>0)个单位长度后,得到直线l,直线l经过点C时停止平移.(1)点A的坐标为,点B的坐标为;(2)若直线l交y轴于点F,连接CF,设△CDF的面积为S(这里规定:线段是面积为0的三角形),求S与n之间的函数关系式,并写出n的取值范围;(3)易知AE⊥AD于点A,若直线l交折线AD﹣DC于点P,当△AEP为直角三角形时,请直接写出n的取值范围.26.2019年中国北京世界园艺博览会于4月28日晚在北京·延庆隆重开幕,本届世园会主题为“绿色生活、美丽家园”.自开园以来,世园会迎来了世界各国游客进园参观.据统计,仅五一小长假前来世园会打卡的游客就总计约32.7万人次.其中中国馆也是非常受欢迎的场馆.据调查,中国馆5月1日游览人数约为4万人,5月3日游览人数约为9万人,若5月1日到5月3日游客人数的日增长率相同,求中国馆这两天游客人数的日平均增长率是多少?

参考答案一、选择题(每题4分,共48分)1、D【解析】

方程两边同时乘以x(x-1)化为整式方程,解整式方程后进行验根即可得.【详解】方程两边同时乘以x(x-1),得x2-1=x(x-1),解得:x=1,检验:当x=1时,x(x-1)=0,所以原分式方程无解,故选D.【点睛】本题考查了解分式方程,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键.2、D【解析】分析:欲求证是否为直角三角形,利用勾股定理的逆定理即可.这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.详解:A、12+()2=3=()2,故是直角三角形,故错误;B、42+32=25=52,故是直角三角形,故错误;C、52+122=169=132,故是直角三角形,故错误;D、22+22=8≠32,故不是直角三角形,故正确.故选D.点睛:本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.3、A【解析】

设等腰直角三角形的直角边为a,正方形边长为c,求出S2(用a、c表示),得出S1,S2,S3之间的关系,由此即可解决问题.【详解】设等腰直角三角形的直角边为a,正方形边长为c,则S2=(a+c)(a-c)=a2-c2,∴S2=S1-S3,∴S3=2S1-2S2,∴平行四边形面积=2S1+2S2+S3=2S1+2S2+2S1-2S2=4S1.故选A.【点睛】本题考查平行四边形的性质、直角三角形的面积等知识,解题的关键是求出S1,S2,S3之间的关系4、C【解析】

反证法的步骤中,第一步是假设结论不成立,反面成立.【详解】用反证法证明“四边形中至少有一个角是钝角或直角”时第一步应假设:所有角都是锐角.故选C.【点睛】此题考查了反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.5、B【解析】分析:根据函数图象中所提供的信息进行分析判断即可.详解:(1)由图中信息可知,乙是在甲出发3小时后出发的,所以结论①正确;(2)由图中信息可知,甲是在乙到达终点3小时后到达的,所以结论②正确;(3)由题中信息可得:V甲=80÷8=10(km/小时)V乙=80÷2=40(km/小时),由此可得:V甲:V乙=1:4,所以结论③错误;(4)由图中信息和(3)中所求甲和乙的速度易得,乙出发后1小时追上甲,所以结论④不成立.综上所述,4个结论中正确的有2个.故选B.点睛:读懂题意,能够从函数图象中获取相关数据信息是解答本题的关键.6、B【解析】

分别从3个条件中选取2个,共3种情况:若选AB∥CD,AB=CD,若选AB∥CD,AD∥BC,若选AB=CD,AD∥BC,逐一利用平行四边形的判定方法验证即可.【详解】若选AB∥CD,AB=CD,∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形(一组对边平行且相等的四边形是平行四边形);若选AB∥CD,AD∥BC,∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形(两组对边分别平行的四边形是平行四边形);若选AB=CD,AD∥BC,不能说明四边形ABCD是平行四边形;故选:B.【点睛】本题主要考查平行四边形的判定,掌握平行四边形的判定方法是解题的关键.7、D【解析】

通过点经过四边形各个顶点,观察图象的对称趋势问题可解.【详解】、选项路线都关于对角线对称,因而函数图象应具有对称性,故、错误,对于选项点从到过程中的长也存在对称性,则图象前半段也应该具有对称特征,故错误.故选:.【点睛】本题动点问题的函数图象,考查学生对动点运动过程中所产生函数图象的变化趋势判断.解答关键是注意动点到达临界前后的图象变化.8、C【解析】

根据平行四边形的性质可知,平行四边形的对角相等,邻角互补,故该平行四边形的四个角的比值为1:2:1:2,所以可以计算出平行四边形的各个角的度数.【详解】根据平行四边形的相邻的两个内角互补知,设较小的内角的度数为x,则有:x+2x=180°∴x=60°,即较小的内角是60°故选C.【点睛】此题考查平行四边形的性质,解题关键在于设较小的内角的度数为x9、B【解析】

根据非负数的性质得到b=4,c=3,a=5,根据勾股定理的逆定理得到△ABC是直角三角形,由三角形的面积公式即可得到结论.【详解】解:∵,∴

即,

∴b=4,c=3,a=5,

∴b2+c2=a2,

∴△ABC是直角三角形,

∴△ABC的面积=×3×4=1.

故选B.【点睛】本题考查非负数的性质,勾股定理的逆定理,三角形的面积的计算,熟练掌握勾股定理的逆定理是解题的关键.10、B【解析】

根据勾股定理,可得答案.【详解】,,A点表示的数是,故选B.【点睛】本题考查了实数与数轴,利用勾股定理是解题关键.11、A【解析】

根据轴对称图形与中心对称图形的概念依次对各项进行判断即可.【详解】A.是轴对称图形,也是中心对称图形,故此选项正确;B.不是轴对称图形,是中心对称图形,故此选项错误;C.不是轴对称图形,也不是中心对称图形,故此选项错误;D.是轴对称图形,不是中心对称图形,故此选项错误;故选:A.【点睛】本题考查中心对称图形与轴对称图形的识别.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.12、A【解析】分析:分别把点代入直线y=-x+1,看是否满足即可.详解:当x=1时,y=-x+1=0;当x=2时,y=-x+1=-1;当x=3时,y=-x+1=-2;当x=4时,y=-x+1=-3;所以点(2,-1)在直线y=-x+1上.故选A.点睛:本题主要考查了一次函数上的坐标特征,关键在于理解一次函数上的坐标特征.二、填空题(每题4分,共24分)13、2.【解析】

根据题意可得:△AOG≌△DOF(ASA),所以S四边形OFDG=S△AOD=S

正方形ABCD,从而可求得其面积.【详解】解:如图,∵正方形ABCD和正方形OMNP的边长都是2cm,

∴OA=OD,∠AOD=∠POM=90°,∠OAG=∠ODF=25°,∴∠AOG=∠DOF,

在△AOG和△DOF中,

∵,

∴△AOG≌△DOF(ASA),

∴S四边形OFDG=S△AOD=S

正方形ABCD=×=2;

则图中重叠部分的面积是2cm1,

故答案为:2.【点睛】本题考查正方形的性质,题中重合的部分的面积是不变的,且总是等于正方形ABCD面积的.14、10【解析】

根据勾股定理c为三角形边长,故c=10.15、30°或150°.【解析】

分等边△ADE在正方形的内部和外部两种情况分别求解即可得.【详解】如图1,∵四边形ABCD为正方形,△ADE为等边三角形,∴AB=BC=CD=AD=AE=DE,∠BAD=∠ABC=∠BCD=∠ADC=90°,∠AED=∠ADE=∠DAE=60°,∴∠BAE=∠CDE=150°,又AB=AE,DC=DE,∴∠AEB=∠CED=15°,则∠BEC=∠AED﹣∠AEB﹣∠CED=30°;如图2,∵△ADE是等边三角形,∴AD=DE,∵四边形ABCD是正方形,∴AD=DC,∴DE=DC,∴∠CED=∠ECD,∴∠CDE=∠ADC﹣∠ADE=90°﹣60°=30°,∴∠CED=∠ECD=×(180°﹣30°)=75°,∴∠BEC=360°﹣75°×2﹣60°=150°,故答案为30°或150°.【点睛】本题考查了正方形的性质,等边三角形的性质,等腰三角形的判定与性质,熟记各性质、运用分类讨论思想画出符合题意的图形并准确识图是解题的关键.16、【解析】

连接AW,如图所示:根据旋转的性质得:AD=AB′,∠DAB′=60°,在Rt△ADW和Rt△AB′W中,,∴Rt△ADW≌Rt△AB′W(HL),∴∠B′AW=∠DAW=又AD=AB′=1,在RT△ADW中,tan∠DAW=,即tan30°=WD解得:WD=∴,则公共部分的面积为:,故答案为.17、1【解析】

过点E作EM∥AD,由△ABO是等腰三角形,根据三线合一可知点E是AO的中点,可证得EM=AD=BC,根据已知可求得∠CEF=∠ECF=15°,从而得∠BEF=15°,△BEF为等腰直角三角形,可得BF=EF=FC=BC,因此可证明△BFP≌△MEP(AAS),则EP=FP=FC,在Rt△BFP中,利用勾股定理可求得x,即得答案.【详解】过点E作EM∥AD,交BD于M,设EM=x,∵AB=OB,BE平分∠ABO,∴△ABO是等腰三角形,点E是AO的中点,BE⊥AO,∠BEO=90°,∴EM是△AOD的中位线,又∵ABCD是平行四边形,∴BC=AD=2EM=2x,∵EF⊥BC,∠CAD=15°,AD∥BC,∴∠BCA=∠CAD=15°,∠EFC=90°,∴△EFC为等腰直角三角形,∴EF=FC,∠FEC=15°,∴∠BEF=90°-∠FEC=15°,则△BEF为等腰直角三角形,∴BF=EF=FC=BC=x,∵EM∥BF,∴∠EMP=∠FBP,∠PEM=∠PFB=90°,EM=BF,则△BFP≌△MEP(ASA),∴EP=FP=EF=FC=x,∴在Rt△BFP中,,即:,解得:,∴BC=2=1,故答案为:1.【点睛】考查了平行四边形的性质,等腰三角形的性质,三线合一的应用,平行线的性质,全等三角形的判定和性质,利用勾股定理求三角形边长,熟记图形的性质定理是解题的关键.18、【解析】

由图中数据可得两个三角形的位似比,进而由点A的坐标,结合位似比即可得出点C的坐标.【详解】解:∵△AOB与△COD是位似图形,

OB=3,OD=1,所以其位似比为3:1.

∵点A的坐标为A(1,2),

∴点C的坐标为.故答案为:.【点睛】本题主要考查了位似变换以及坐标与图形结合的问题,解题的关键是根据题意求得其位似比.三、解答题(共78分)19、(1)2;(2)小明摸得两个球得2分的概率为.【解析】

(1)首先设乙袋中红球的个数为x个,根据题意可得方程:,解此方程即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小明摸得两个球得2分的情况,再利用概率公式求解即可求得答案.【详解】(1)甲袋中摸出红球的概率为,则乙袋中摸出红球的概率为,设乙袋中红球的个数为x个,根据题意得:,解得:x=2,经检验,x=2是原分式方程的解,∴乙袋中红球的个数是2个,故答案为:2;(2)画树状图得:∵共有16种等可能的结果,又∵摸到白球记1分,摸到黄球记2分,摸到红球记0分,∴小明摸得两个球得2分的有5种情况,∴小明摸得两个球得2分的概率为:.【点睛】本题考查了分式方程的应用,列表法或树状图法求概率,熟练掌握相关知识是解题的关键.用到的知识点为:概率=所求情况数与总情况数之比.20、3【解析】试题分析:利用平方差公式展开和二次根式的乘除法则运算;然后合并即可.试题解析:原式=7-5+3-2=2+1=3.21、(1);(2).【解析】

(1)先利用平方差公式化简后面两个括号,再根据二次根式的运算法则进行计算即可得出答案;(2)先利用平方差公式和完全平方公式进行展开,再根据二次根式的运算法则进行计算即可得出答案.【详解】解:(1)原式=(2)原式=【点睛】本题考查的是二次根式的运算,难度适中,需要熟练掌握二次根式的运算法则.22、(1)应该录取丙;(2)应该录取甲;(3)应该录取乙【解析】

(1)分别算出甲乙丙的平均数,比较即可;(2)由听、说、读、写按照的比3∶4∶2∶1确定,根据加权平均数的计算方法分别计算不同权的平均数,比较即可;

(3)由听、说、读、写按照的比1∶2∶3∶4确定,根据加权平均数的计算方法分别计算不同权的平均数,比较即可.【详解】(1)甲的平均成绩:乙的平均成绩:丙的平均成绩:∵80.5>80.25>80∴应该录取丙(2)甲的平均成绩:乙的平均成绩:丙的平均成绩:∵82.1>81>79.1∴应该录取甲(3)甲的平均成绩:乙的平均成绩:丙的平均成绩:∵81.6>80.1>78.8∴应该录取乙.【点睛】本题考查的是加权平均数的实际应用,熟练掌握加权平均数是解题的关键.23、(1)m=1,l1的解析式为y=-x+5;(2)自变量x的取值范围是0<x<1.【解析】

(1)先求得点C的坐标,再运用待定系数法即可得到l1的解析式;(2)根据函数图象,结合C点的坐标即可求得.【详解】解:(1)把C(m,3)代入正比例函数y=x,可得3=m,解得m=1,∴C(1,3),∵一次函数y=kx+b的图象l1分别过A(15,0),C(1,3),∴解得,∴l1的解析式为y=-x+5;(2)由图象可知:第一象限内,一次函数y=kx+b的值大于正比例函数y=x的值时,自变量x的取值范围是0<x<1.故答案为(1)m=1,l1的解析式为y=-x+5;(2)自变量x的取值范围是0<x<1.【点睛】本题考查两条直线相交或平行问题,关键是掌握待定系数法求函数解析式.24、(1)证明见详解;(2)45°;(3)BC+BE=2BG,理由见详解.【解析】

(1)作FH⊥BC于H,由等腰三角形的性质得出∠ABD=∠CBD,BD⊥AC,由角平分线的性质得出EF=HF,∠BEF=90°=∠BHF,证明△BEF≌△BHF,得出BE=BH,证出△BCE是等腰直角三角形,得出∠BCE=45°,BE=EC=BH,证出△CFH是等腰直角三角形,得出CH=HF=EF,即可得出结论;(2)由BD平分∠ABC,得到∠ABD的度数,然后求得∠BFE,由直角三角形斜边上的中线定理,可得DE=CD,可得∠DEF=∠DCF=22.5°,然后根据外角定理,即可求得∠BDE;(3)由(2)知,∠ADE=∠ABC=45°,由等腰三角形的性质得出∠A=∠ACB=67.5°,由三角形内角和定理得出∠AED=180°-∠A-∠ADE=67.5°,得出∠AED=∠A,证出DA=DE,由等腰三角形的性质得出AG=EG,即可得出结论.【详解】(1)证明:作FH⊥BC于H,如图所示:

则∠BHF=90°,∵AB=BC,BD是AC边上的高,∴∠ABD=∠CBD,BD⊥AC,∵CE是AB边上的高,∴CE⊥AB,∴EF=HF,∠BEF=90°=∠BHF,在△BEF和△BHF中,∴△BEF≌△BHF(AAS),∴BE=BH,∵∠ABC=45°,∴△BCE是等腰直角三角形,∴∠BCE=45°,BE=EC=BH,∴△CFH是等腰直角三角形,∴CH=HF=EF,∴EC+EF=BH+CH=BC;(2)解:如图,由(1)知,BD平分∠ABC,∠ABC=45°,∴∠ABF=22.5°,∴∠BFE=90°-22.5°=67.5°,∵AB=BC,∠ABC=45°,∴∠A=,在直角三角形ACE中,D是AC中点,∴DE=CD=AD,∴∠DEF=∠DCF=90°-67.5°=22.5°,∴∠BDE=∠BFE-∠DEF=67.5°-22.5°=45°;(3)解:BC+BE=2BG,理由如下:如图,由(2)得:∠DEF=∠DCF=22.5°∴∠ADE=∠ABC=45°,∵AB=BC,∠ABC=45°,∴∠A=∠ACB=67.5°,∴∠AED=180°-∠A-∠ADE=67.5°,∴∠AED=∠A,∴DA=DE,∵DG⊥AE,∴AG=EG,∵BC=AB=BE+AE=BE+2EG=BG+EG,EG=BG-BE,∴BC=BG+BG-BE,∴BC+BE=2BG.【点睛】本题是三角形综合题目,考查了全等三角形的判定与性质、等腰三角形的性质与判定、等腰直角三角形的判定与性质、角平分线的性质、直角三角形斜边上的中线等;本题综合性强,熟练掌握等腰三角形的性质,证明三角

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论