2024年上海市崇明区八年级下册数学期末质量检测试题含解析_第1页
2024年上海市崇明区八年级下册数学期末质量检测试题含解析_第2页
2024年上海市崇明区八年级下册数学期末质量检测试题含解析_第3页
2024年上海市崇明区八年级下册数学期末质量检测试题含解析_第4页
2024年上海市崇明区八年级下册数学期末质量检测试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年上海市崇明区八年级下册数学期末质量检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.下列方程中有一根为3的是()A.x2=3 B.x2﹣4x﹣3=0C.x2﹣4x=﹣3 D.x(x﹣1)=x﹣32.下列图形中,既是轴对称图形,又是中心对称图形的是()A. B.C. D.3.根据下表中一次函数的自变量x与函数y的对应值,可得p的值为()x

-2

0

1

y

3

p

0

A.1 B.-1 C.3 D.-34.如图,在平行四边形ABCD中,点E是CD边上一点,,连接AE、BE、BD,且AE、BD交于点F,若,则()A.15.5 B.16.5 C.17.5 D.18.55.不等式组的解集在数轴上表示正确的是()A. B.C. D.6.在一张由复印机复印出来的纸上,一个多边形图案的一条边由原来的1cm变成2cm,那么这次复印出来的多边形图案面积是原来的()A.1倍 B.2倍C.3倍 D.4倍7.小明家、食堂、图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回家,如图反映了这个过程中小明离家的距离y(km)与时间x(min)之间的对应关系.根据图象,下列说法中正确的是()A.小明吃早餐用了17minB.食堂到图书馆的距离为0.8kmC.小明读报用了28minD.小明从图书馆回家的速度为0.8km/min8.要说明命题“若>,则>”是假命题,能举的一个反例是()A. B.C. D.9.将一副三角尺按如图的方式摆放,其中l1∥l2,则∠α的度数是()A.30° B.45° C.60° D.70°10.已知实数a,b,若a>b,则下列结论错误的是A.a-7>b-7 B.6+a>b+6 C. D.-3a>-3b二、填空题(每小题3分,共24分)11.计算=_____,(﹣)2=_____,3﹣=_____.12.有一面积为5的等腰三角形,它的一个内角是30°,则以它的腰长为边的正方形的面积为.13.如图,在平行四边形ABCD中,AC⊥BC,AD=AC=2,则BD的长为_____.14.如图,两个大小完全相同的矩形ABCD和AEFG中AB=4cm,BC=3cm,则FC=_____.15.点A(1,3)_____(填“在”、或“不在”)直线y=﹣x+2上.16.把容量是64的样本分成8组,从第1组到第4组的频数分别是5,7,11,13,第5组到第7组的频率都是0.125,那么第8组的频率是______.17.如图,边长为的正方形和边长为的正方形排放在一起,和分别是两个正方形的对称中心,则的面积为________.18.如图所示,小明从坡角为30°的斜坡的山底(A)到山顶(B)共走了200米,则山坡的高度BC为米.三、解答题(共66分)19.(10分)如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BC相交于点N.连接BM,DN.(1)求证:四边形BMDN是菱形;(2)若AB=4,AD=8,求MD的长.20.(6分)甲、乙两公司为“见义勇为基金会”各捐款3000元.已知甲公司的人数比乙公司的人数多20%,乙公司比甲公司人均多捐20元.请你根据上述信息,就这两个公司的“人数”或“人均捐款”提出一个用分式方程解决的题,并写出解题过程.21.(6分)甲、乙两校参加区教育局举办的学生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如图所示的尚不完整的统计图表.甲校成绩统计表分数7分8分9分10分人数1108(1)在图①中,“7分”所在扇形的圆心角等于______;(2)请你将②的统计图补充完整;(3)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好;(4)如果该教育局要组织8人的代表队参加市级团体赛,为便于管理,决定从这两所学校中的一所挑选参赛选手,请你分析,应选哪所学校?22.(8分)一个二次函数的图象经过三点.求这个二次函数的解析式并写出图象的开口方向、对称轴和顶点.23.(8分)我国古代数学名著《孙子算经》中有这样一道有关于自然数的题:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二.问物几何?”就是说:一个数被2除余2,被5除余2,被7除余2,求这个数.《孙子算经》的解决方法大体是这样的先求被2除余2,同时能被5,7都整除的数,最小为1.再求被5除余2.同时能被2,7都整除的数,最小为62.最后求被7除余2,同时能被2,5都整除的数,最小为20.于是数1+62+20=222.就是一个所求的数.那么它减去或加上2,5,7的最小公倍数105的倍数,比如222﹣105=128,222+105=288…也是符合要求的数,所以符合要求的数有无限个,最小的是22.我们定义,一个自然数,若满足被2除余1,被2除余2,被5除余2,则称这个数是“魅力数”.(1)判断42是否是“魅力数”?请说明理由;(2)求出不大于100的所有的“魅力数”.24.(8分)图1,抛物线与x轴交于A(﹣1,0),B(3,0),顶点为D(1,﹣4),点P为y轴上一动点.(1)求抛物线的解析式;(2)在y轴的负半轴上是否存在点P,使△BDP是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.(3)如图2,点M-3225.(10分)已知反比例函数y=的图象经过点A(x1,y1)和B(x2,y2)(x1<x2)(1)若A(4,n)和B(n+,3),求反比例函数的表达式;(2)若m=1,①当x2=1时,直接写出y1的取值范围;②当x1<x2<0,p=,q=,试判断p,q的大小关系,并说明理由;(3)若过A、B两点的直线y=x+2与y轴交于点C,连接BO,记△COB的面积为S,当<S<1,求m的取值范围.26.(10分)小明想利用太阳光测量楼高.他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下:如图,小明边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得小明落在墙上的影子高度CD=1.2m,CE=0.8m,CA=30m.(点A,E,C在同一直线上),已知小明的身高EF是1.7m,请你帮小明求出楼高AB.(结果精确到0.1m)

参考答案一、选择题(每小题3分,共30分)1、C【解析】

利用一元二次方程解的定义对各选项分别进行判断.【详解】解:当x=3时,x2=9,所以x=3不是方程x2=3的解;当x=3时,x2﹣4x﹣3=9﹣12﹣3=﹣6,所以x=3不是方程x2﹣4x﹣3=0的解;当x=3时,x2﹣4x=9﹣12=﹣3,所以x=3是方程x2﹣4x=﹣3的解;当x=3时,x(x﹣1)=6,x﹣3,0,所以x=3是方程x(x﹣1)=x﹣3的解.故选:C.【点睛】本题考查了一元二次方程根的定义,即把根代入方程此时等式成立2、C【解析】

根据轴对称图形与中心对称图形的概念求解.【详解】A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项错误;C、是轴对称图形,又是中心对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误.故选:C.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3、A【解析】设一次函数的解析式为y=kx+b,将表格中的对应的x,y的值(-2,3),(1,0)代入得:,解得:.∴一次函数的解析式为y=-x+1.当x=0时,得y=1.故选A.4、C【解析】

根据已知可得到相似三角形,从而可得到其相似比,根据相似三角形的面积比等于相似比的平方求出△ABF,再根据同高的三角形的面积之比等于底的比得出△BEF的面积,则=+即可求解.【详解】解:∵四边形ABCD是平行四边形,∴DE∥AB,∴△DFE∽△BFA,∵DE:EC=2:3,∴DE:AB=2:5,DF:FB=2:5,∵=2,根据相似三角形的面积比等于相似比的平方,∴:=,即==12.5,∵同高的三角形的面积之比等于底的比,△DEF和△BEF分别以DF、FB为底时高相同,∴:=DF:FB=2:5,即==5,∴=+=12.5+5=17.5,故选C.【点睛】本题考查了相似三角形的性质,相似三角形的面积比等于相似比的平方,同高的三角形的面积之比等于底的比,解题的关键是掌握相似三角形的性质.5、B【解析】

根据大于小的小于大的取中间确定不等式组的解集,最后用数轴表示解集.【详解】所以这个不等式的解集是-3≤x<1,用数轴表示为故选B【点睛】此题考查在数轴上表示不等式的解集,解一元一次不等式组,解题关键在于掌握运算法则.6、D【解析】

复印前后的多边形按照比例放大与缩小,因此它们是相似多边形,本题按照相似多边形的性质求解.【详解】由题意可知,相似多边形的边长之比=相似比=1:2,所以面积之比=(1:2)2=1:4.故选D.【点睛】此题考查相似多边形的性质,解题关键在于掌握其性质.7、A【解析】

根据题意和函数图象中的数据可以判断各个选项中的说法是否正确,从而可以解答本题.【详解】解;由图象可得:小明吃早餐用了25﹣8=17min,故选项A正确;食堂到图书馆的距离为0.8﹣0.6=0.2km,故选项B错误;小明读报用了58﹣28=30min,故选项C错误;小明从图书馆回家的速度为0.8÷(68﹣58)=0.08km/min,故选项D错误.故选A.【点睛】本题考查了函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.8、D【解析】

作为反例,要满足条件但不能得到结论,然后根据这个要求对各选项进行判断即可.【详解】解:A、a=3,b=2,满足a>b,且满足|a|>|b|,不能作为反例,故错误;

B、a=4,b=-1,满足a>b,且满足|a|>|b|,不能作为反例,故错误;

C、a=1,b=0;满足a>b,且满足|a|>|b|,不能作为反例,故错误;

D、a=-1,b=-2,满足a>b,但不满足|a|>|b|,∴a=-1,b=-2能作为证明原命题是假命题的反例,

故选:D.【点睛】本题考查了命题与定理;熟记:要判断一个命题是假命题,举出一个反例就可以.9、C【解析】

先由两直线平行内错角相等,得到∠A=30°,再由直角三角形两锐角互余即可得到∠α的度数.【详解】解:如图所示,∵l1∥l2,∴∠A=∠ABC=30°,又∵∠CBD=90°,∴∠α=90°﹣30°=60°,故选C.【点睛】此题考查了平行线的性质和直角三角形的性质.注意:两直线平行,内错角相等.10、D【解析】A.∵a>b,∴a-7>b-7,∴选项A正确;B.∵a>b,∴6+a>b+6,∴选项B正确;C.∵a>b,∴,∴选项C正确;D.∵a>b,∴-3a<-3b,∴选项D错误.故选D.二、填空题(每小题3分,共24分)11、62.【解析】

根据二次根式的性质化简和(﹣)2,利用二次根式的加减法计算3﹣.【详解】解:=2,(﹣)2=6,3﹣=2.故答案为2,6,2.【点睛】本题考查了二次根式的加减法:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.12、1或1.【解析】

试题分析:分两种情形讨论①当30度角是等腰三角形的顶角,②当30度角是底角,①当30度角是等腰三角形的顶角时,如图1中,当∠A=30°,AB=AC时,设AB=AC=a,作BD⊥AC于D,∵∠A=30°,∴BD=AB=a,∴•a•a=5,∴a2=1,∴△ABC的腰长为边的正方形的面积为1.②当30度角是底角时,如图2中,当∠ABC=30°,AB=AC时,作BD⊥CA交CA的延长线于D,设AB=AC=a,∵AB=AC,∴∠ABC=∠C=30°,∴∠BAC=11°,∠BAD=60°,在RT△ABD中,∵∠D=90°,∠BAD=60°,∴BD=a,∴•a•a=5,∴a2=1,∴△ABC的腰长为边的正方形的面积为1.考点:正方形的性质;等腰三角形的性质.13、2【解析】

设AC与BD的交点为O,根据平行四边形的性质,可得AO=CO=1,BO=DO,根据勾股定理可得BO=,即可求BD的长.【详解】解:设AC与BD的交点为O∵四边形ABCD是平行四边形∴AD=BC=2,AD∥BCAO=CO=1,BO=DO∵AC⊥BC∴BO==∴BD=2.故答案为2.【点睛】本题考查了平行四边形的性质和勾股定理,关键是灵活运用平行四边形的性质解决问题.14、5cm【解析】

利用勾股定理列式求出AC的长度,再根据两矩形是完全相同的矩形可知AC=AF,∠BAC+∠GAF=90°,然后判断出△ACF是等腰直角三角形,再利用等边三角形的性质求解即可.【详解】∵矩形ABCD中,AB=4cm,BC=3cm,∴AC===5cm,∵矩形ABCD和AEFG是两个大小完全相同的矩形,∴AC=AF,∠BAC+∠GAF=90°,∴△ACF是等腰直角三角形,∴FC=AC=5cm.故答案为5cm.【点睛】本题考查了矩形的对角线相等,每一个角都是直角的性质,勾股定理应用,判断出△ACF是等腰直角三角形是解题的关键.15、不在.【解析】

把A(1,3)代入y=﹣x+2验证即可.【详解】当x=1时,y=﹣x+2=1,∴点(1,3)不在直线y=﹣x+2上.故答案为:不在.【点睛】本题考查了一次函数图像上点的坐标特征,一次函数图像上点的坐标满足一次函数解析式.16、0.1【解析】

利用频率与频数的关系得出第1组到第4组的频率,进而得出第8组的频率.【详解】解:∵把容量是64的样本分成8组,从第1组到第4组的频数分别是5,7,11,13,

∴第1组到第4组的频率是:(5+7+11+13)0.5625∵第5组到第7组的频率是0.125,第8组的频率是:1-0.5625-0.125=0.1故答案为:0.1.【点睛】此题主要考查了频数与频率,正确求出第5组到第7组的频数是解题关键.17、【解析】

由O1和O2分别是两个正方形的对称中心,可求得BO1,BO2的长,易证得∠O1BO2是直角,继而求得答案.【详解】解:∵O1和O2分别是这两个正方形的中心,∴BO1=×6=3,BO2=×8=4,∠O1BC=∠O2BC=45°,∴∠O1BO2=∠O1BC+∠O2BC=90°,∴阴影部分的面积=×4×3=12.故答案是:12.【点睛】本题考查的是正方形的综合运用,熟练掌握对称中心是解题的关键.18、1【解析】试题分析:直接利用坡角的定义以及结合直角三角中30°所对的边与斜边的关系得出答案.解:由题意可得:AB=200m,∠A=30°,则BC=AB=1(m).故答案为:1.三、解答题(共66分)19、(1)证明见解析;(2)MD长为1.【解析】

(1)利用矩形性质,证明BMDN是平行四边形,再结合MN⊥BD,证明BMDN是菱形.(2)利用BMDN是菱形,得BM=DM,设,则,在中使用勾股定理计算即可.【详解】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠MDO=∠NBO,∠DMO=∠BNO,∵BD的垂直平分线MN∴BO=DO,∵在△DMO和△BNO中∠MDO=∠NBO,BO=DO,∠MOD=∠NOB∴△DMO≌△BNO(AAS),∴OM=ON,∵OB=OD,∴四边形BMDN是平行四边形,∵MN⊥BD∴BMDN是菱形(2)∵四边形BMDN是菱形,∴MB=MD,设MD=x,则MB=DM=x,AM=(8-x)在Rt△AMB中,BM2=AM2+AB2即x2=(8-x)2+42,解得:x=1答:MD长为1.【点睛】本题考查了矩形的性质,菱形的性质,及勾股定理,熟练使用以上知识是解题的关键.20、问:甲、乙两公司各有多少名员工?;见解析;甲公司有30名员工,乙公司有25名员工【解析】

问:甲、乙两公司各有多少名员工?设乙公司有x名员工,则甲公司有1.2x名员工,根据人均捐款钱数=捐款总钱数÷人数结合乙公司比甲公司人均多捐20元,即可得出关于x的分式方程,解之经检验后即可得出结论.【详解】解:问:甲、乙两公司各有多少名员工?设乙公司有x名员工,则甲公司有1.2x名员工,依题意,得:-=20,解得:x=25,经检验,x=25是原分式方程的解,且符合题意,∴1.2x=30答:甲公司有30名员工,乙公司有25名员工.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.21、(1)144°;(2)乙校得8分的学生的人数为3人,据此可将图②的统计图补充完整如图③见解析;(3)从平均分和中位数的角度分析乙校成绩较好;(4)应选甲校.【解析】

(1)观察图①、图②,根据10分的人数以及10分的圆心角的度数可以求出乙校参赛的人数,然后再用360度乘以“7分”学生所占的比例即可得;(2)求出8分的学生数,据此即可补全统计图;(3)先求出甲校9分的人数,然后利用加权平均数公式求出甲校的平均分,根据中位数概念求出甲校的中位数,结合乙校的平均分与中位数进行分析作出判断即可;(4)根据两校的高分人数进行分析即可得.【详解】(1)由图①知“10分”的所在扇形的圆心角是90度,由图②知10分的有5人,所以乙校参加英语竞赛的人数为:5÷=20(人),所以“7分”所在扇形的圆心角=360°×=144°,故答案为:144;(2)乙校得8分的学生的人数为(人),补全统计图如图所示:(3)由(1)知甲校参加英语口语竞赛的学生人数也是20人,故甲校得9分的学生有(人),所以甲校的平均分为:(分),中位数为7分,而乙校的平均数为8.3分,中位数为8分,因为两校的平均数相同,但甲校的中位数要低于乙校,所以从平均分和中位数的角度分析乙校成绩较好;(4)选8名学生参加市级口语团体赛,甲校得10分的有8人,而乙校得10分的只有5人,所以应选甲校.【点睛】本题考查了条形统计图和扇形统计图的综合运用,中位数等知识,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22、,图象开口向上,对称轴直线,顶点.【解析】

首先根据待定系数法求解二次函数的解析式,再根据二次函数的系数确定抛物线的开口方向,对称轴,和公式法计算顶点坐标.【详解】设二次函数的解析式为.由已知,函数的图象经过三点,可得解这个方程组,得,,.所求二次函数的解析式为,图象开口向上,对称轴直线,顶点.【点睛】本题主要考查二次函数抛物线解析式的计算、抛物线的性质,这是考试的必考点,必须熟练掌握.23、(1)49不是“魅力数”,理由详见解析;(9)99、59、89.【解析】

(1)验证49是否满足“被9除余1,被9除余9,被5除余9”这三个条件,若全部满足,则为“魅力数”,若不全满足,则不是“魅力数”;(9)根据样例,先求被9除余1,同时能被9,5都整除的数,最小为8.再求被9除余9.同时能被9,5都整除的数,最小为90.最后求被5除余9,同时能被9,9都整除的数,最小为11.于是数8+90+11=59,再用它减去或加上9,9,5的最小公倍数90的倍数得结果.【详解】解:(1)49不是“魅力数”.理由如下:∵49=14×9+1,∴49被9除余1,不余9,∴根据“魅力数”的定义知,49不是“魅力数”;(9)先求被9除余1,同时能被9,5都整除的数,最小为8.再求被9除余9.同时能被9,5都整除的数,最小为90.最后求被5除余9,同时能被9,9都整除的数,最小为11.∴数8+90+11=59是“魅力数”,∵9、9、5的最小公倍数为90,∴59﹣90=99也是“魅力数”,59+90=89也是“魅力数”,故不大于100的所有的“魅力数”有99、59、89三个数.【点睛】本题考查了数学文化问题,读懂题意,明确定义是解题的关键.24、(1)y=x1﹣1x﹣3;(1)点P坐标为(0,﹣11)或(0,﹣19﹣4)或(0,﹣1);(3)27【解析】

(1)由已知抛物线顶点坐标为D,设抛物线的解析式为y=a(x﹣1)1﹣4,再把点A代入即可求得二次项系数a的值,由此即可求得抛物线的解析式;(1)由点B、D坐标可求BD的长.设点P坐标为(0,t),用t表示BP1,DP1.对BP=BD、DP=BD、BP=DP三种情况进行分类讨论计算,解方程求得t的值并讨论是否合理即可;(3)由点B、C坐标可得∠BCO=45°,所以过点P作BC垂线段PQ即构造出等腰直角△PQC,可得PQ=22PC,故有MP+22PC=MP+PQ.过点M作BC的垂线段MH,根据垂线段最短性质,可知当点M、P、Q在同一直线上时,MP+22PC=MP+PQ=MH最小,即需求MH的长.连接MB、MC构造△BCM,利用y轴分成△BCD与△CDM求面积和即得到△BCM面积,再由S△BCM=12BC•【详解】解:(1)∵抛物线顶点为D(1,﹣4),∴设抛物线的解析式为y=a(x﹣1)1﹣4,∵A(﹣1,0)在抛物线上∴4a﹣4=0,解得:a=1∴抛物线的解析式为y=(x﹣1)1﹣4=x1﹣1x﹣3(1)在y轴的负半轴上存在点P,使△BDP是等腰三角形.∵B(3,0),D(1,﹣4)∴BD1=(3﹣1)1+(0+4)1=10设y轴负半轴的点P坐标为(0,t)(t<0)∴BP1=31+t1,DP1=11+(t+4)1①若BP=BD,则9+t1=10解得:t1=11(舍去),t1=﹣11②若DP=BD,则1+(t+4)1=10解得:t1=19-4(舍去),t1=﹣19﹣4③若BP=DP,则9+t1=1+(t+4)1解得:t=﹣1综上所述,点P坐标为(0,﹣11)或(0,﹣19﹣4)或(0,﹣1)(3)连接MC、MB,MB交y轴于点D,过点P作PQ⊥BC于点Q,过点M作MH⊥BC于点H∵x=0时,y=x1﹣1x﹣3=﹣3;∴C(0,﹣3);∵B(3,0),∠BOC=90°;∴∠OBC=∠OCB=45°,BC=32∵∠PQC=90°∴Rt△PQC中,sin∠BCO=PQPC=∴PQ=22∴MP+22PC=MP+∵MH⊥BC于点H,∴当点M、P、Q在同一直线上时,MP+22PC=MP+PQ=MH∵M(﹣32,m∴m=(﹣32)1﹣1×(﹣32)﹣3=∴M(﹣32,9设直线MB解析式为y=kx+b∴-32解得:k=-1∴直线MB:y=﹣12x+3∴MB与y轴交点D(0,32∴CD=32﹣(﹣3)=9∴S△BCM=S△BCD+S△CDM=12CD•BO+12CD•|xM|=12CD•(xB﹣xM)=12×92×(∵S△BCM=12BC•∴MH=2×8183∴MP+22PC的最小值为27【点睛】本题是二次函数的综合题,考查了待定系数法求解析式,等腰三角形的性质,三角形面积的求法等,解决第(1)问时要注意分类讨论,不要漏解;解决第(3)问时,确定当点M、P、Q在同一直线上时,MP+22PC25、(1)y=;(2)①当0<x1<1时,y1>1,当x1<0时,y1<0;②p<q,见解析;(3)<m<3或-1<m<-【解析】

(1)将点A,B的坐标代入反比例函数解析式中,联立方程组即可得出结论;(2)先得出反比例函数解析式,①先得出x1=,再分两种情况讨论即可得出结论;②先表示出y1=,y2=,进而得出p=,最后用作差法,即

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论