2024届江苏省无锡市玉祁初级中学八年级下册数学期末统考模拟试题含解析_第1页
2024届江苏省无锡市玉祁初级中学八年级下册数学期末统考模拟试题含解析_第2页
2024届江苏省无锡市玉祁初级中学八年级下册数学期末统考模拟试题含解析_第3页
2024届江苏省无锡市玉祁初级中学八年级下册数学期末统考模拟试题含解析_第4页
2024届江苏省无锡市玉祁初级中学八年级下册数学期末统考模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏省无锡市玉祁初级中学八年级下册数学期末统考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.在下列长度的各组线段中,能构成直角三角形的是()A.3,5,9 B.4,6,8 C.13,14,15 D.8,15,172.一个多边形的内角和是7200,则这个多边形的边数是()A.2 B.4 C.6 D.83.用配方法解方程,配方正确的是()A. B. C. D.4.如图,在等腰直角△ABC中,∠ACB=90°,O是斜边AB的中点,点D,E分别在直角边AC,BC上,且∠DOE=90°,DE交OC于点P,则下列结论:(1)AD+BE=AC;(2)AD2+BE2=DE2;(3)△ABC的面积等于四边形CDOE面积的2倍;(4)OD=OE,其中正确的结论有()A. B. C. D.5.以下各组数中,能作为直角三角形的三边长的是A.6,6,7 B.6,7,8 C.6,8,10 D.6,8,96.如图,矩形的对角线与交于点,过点作的垂线分别交、于、两点,若,,则的长度为()A.1 B.2 C. D.7.下列各方程中,是一元二次方程的是()A. B. C. D.8.菱形OABC在平面直角坐标系中的位置如图所示,若OA=2,∠AOC=45°,则B点的坐标是A.(2+,) B.(2﹣,) C.(﹣2+,) D.(﹣2﹣,)9.计算:513A.2.5与3之间 B.3与3.5之间 C.3.5与4之间 D.4与4.5之间10.在一个直角三角形中,如果斜边长是10,一条直角边长是6,那么另一条直角边长是().A.6 B.7 C.8 D.9二、填空题(每小题3分,共24分)11.如图1,四边形ABCD中,AB∥CD,∠B=90°,AC=AD.动点P从点B出发沿折线B-A-D-C方向以1单位/秒的速度匀速运动,在整个运动过程中,△BCP的面积S与运动时间t(秒)的函数图象如图2所示,写出①AB=__________;②CD=_______________(提示:过A作CD的垂线);③BC=_______________.12.某果农2014年的年收入为5万元,由于党的惠农政策的落实,2016年年收入增加到7.2万元,若平均每年的增长率是x,则x=_____.13.如图,在平行四边形ABCD中,BE、CE分别平分∠ABC、∠BCD,E在AD上,BE=12cm,CE=5cm,则平行四边形ABCD的周长___________.14.菱形ABCD的两条对角线长分别为6cm和8cm,则菱形ABCD的面积为_____;周长为______.15.为了解某篮球队队员身高,经调查结果如下:3人,2人,2人,3人,则该篮球队队员平均身高是__________.16.某次数学竞赛共有20道选择题,评分标准为对1题给5分,错1题扣3分,不答题不给分也不扣分,小华有3题未做,则他至少答对____道题,总分才不会低于65分.17.如图,在▱ABCD中,AB=2,BC=3,∠BAD=120°,AE平分∠BAD,交BC于点E,过点C作CF∥AE,交AD于点F,则四边形AECF的面积为________.18.重庆新高考改革方案正式确定,高考总成绩的组成科目由“语数外+文综/理综”变成“3+1+2”,其中“2”是指学生需从思想政治、地理、化学、生物学四门科目中自选2门科目,则小明从这四门学科中恰好选择化学、生物的概率为_____.三、解答题(共66分)19.(10分)计算:(1);(2).20.(6分)某手机店销售部型和部型手机的利润为元,销售部型和部型手机的利润为元.(1)求每部型手机和型手机的销售利润;(2)该手机店计划一次购进,两种型号的手机共部,其中型手机的进货量不超过型手机的倍,设购进型手机部,这部手机的销售总利润为元.①求关于的函数关系式;②该手机店购进型、型手机各多少部,才能使销售总利润最大?(3)在(2)的条件下,该手机店实际进货时,厂家对型手机出厂价下调元,且限定手机店最多购进型手机部,若手机店保持同种手机的售价不变,设计出使这部手机销售总利润最大的进货方案.21.(6分)本学期开学初,学校体育组对九年级某班50名学生进行了跳绳项目的测试,根据测试成绩制作了下面两个统计图.根据统计图解答下列问题:(1)本次测试的学生中,得4分的学生有多少人?(2)本次测试的平均分是多少分?(3)通过一段时间的训练,体育组对该班学生的跳绳项目进行了第二次测试,测得成绩的最低分为3分.且得4分和5分的人数共有45人,平均分比第一次提高了0.8分,问第二次测试中得4分、5分的学生各有多少人?22.(8分)如图,已知:AD为△ABC的中线,过B、C两点分别作AD所在直线的垂线段BE和CF,E、F为垂足,过点E作EG∥AB交BC于点H,连结HF并延长交AB于点P.(1)求证:DE=DF(2)若;①求:的值;②求证:四边形HGAP为平行四边形.23.(8分)如图,中,延长到点,延长到点,使,连接、.求证:四边形是平行四边形.24.(8分)已知一次函数的图象经过(﹣4,15),(6,﹣5)两点,如果这条直线经过点P(m,2),求m的值.25.(10分)解方程:(1)(2)解方程x2-4x+1=026.(10分)王华同学要证明命题“对角线相等的平行四边形是矩形”是正确的,她先作出了如图所示的平行四边形ABCD,并写出了如下不完整的已知和求证.已知:如图1,在平行四边形ABCD中,

,求证:平行四边形ABCD是

.(1)在方框中填空,以补全已知和求证;(2)按王晓的想法写出证明过程;证明:

参考答案一、选择题(每小题3分,共30分)1、D【解析】

欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【详解】解:A、因为32+52≠92,所以不能组成直角三角形;

B、因为42+62≠82,所以不能组成直角三角形;

C、因为132+142≠152,所以不能组成直角三角形;

D、因为82+152=172,所以能组成直角三角形.

故选:D.【点睛】此题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.2、C【解析】

n边形的内角和为(n-2)180°,由此列方程求n的值【详解】解:设这个多边形的边数是n,

则:(n-2)180°=720°,

解得n=6,

故选:C.【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.3、C【解析】

把常数项-4移项后,应该在左右两边同时加上一次项系数-2的一半的平方.【详解】解:把方程x2-2x-4=0的常数项移到等号的右边,得到x2-2x=4,方程两边同时加上一次项系数一半的平方,得到x2-2x+1=4+1,配方得(x-1)2=1.故选C.【点睛】本题考查了解一元二次方程--配方法.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.4、D【解析】

由等腰直角三角形的性质可得AC=BC,CO=AO=BO,∠ACO=∠BCO=∠A=∠B=45°,CO⊥AO,由“ASA”可证△ADO≌△CEO,△CDO≌△BEO,由全等三角形的性质可依次判断.【详解】∵在等腰直角△ABC中,∠ACB=90°,O是斜边AB的中点,∴AC=BC,CO=AO=BO,∠ACO=∠BCO=∠A=∠B=45°,CO⊥AO∵∠DOE=90°,∴∠COD+∠COE=90°,且∠AOD+∠COD=90°∴∠COE=∠AOD,且AO=CO,∠A=∠ACO=45°,∴△ADO≌△CEO(ASA)∴AD=CE,OD=OE,故④正确,同理可得:△CDO≌△BEO∴CD=BE,∴AC=AD+CD=AD+BE,故①正确,在Rt△CDE中,CD2+CE2=DE2,∴AD2+BE2=DE2,故②正确,∵△ADO≌△CEO,△CDO≌△BEO∴S△ADO=S△CEO,S△CDO=S△BEO,∴△ABC的面积等于四边形CDOE面积的2倍;故③正确,综上所述:正确的结论有①②③④,故选D.【点睛】本题考查了全等三角形的判定和性质,勾股定理,等腰直角三角形的性质,熟练运用等腰直角三角形的性质是本题的关键.5、C【解析】

分别把选项中的三边平方后,根据勾股定理逆定理即可判断能否构成直角三角形.【详解】解:A、,不能构成直角三角形;B、,不能构成直角三角形;C、,能构成直角三角形;D、,不能构成直角三角形;故选C.【点睛】考查了勾股数的判定方法,比较简单,只要对各组数据进行检验,看各组数据是否符合勾股定理的逆定理即可.6、B【解析】

先根据矩形的性质,推理得到OF=CF,再根据Rt△BOF求得OF的长,即可得到CF的长.【详解】解:∵EF⊥BD,∠AEO=120°,∴∠EDO=30°,∠DEO=60°,∵四边形ABCD是矩形,∴∠OBF=∠OCF=30°,∠BFO=60°,∴∠FOC=60°-30°=30°,BF=2OF,∴OF=CF,又∵BO=BD=AC=2,∴在Rt△BOF中,BO2+OF2=(2OF)2,∴(2)2+OF2=4OF2,∴OF=2,∴CF=2,故选:B.【点睛】本题主要考查了矩形的性质,含30°角的直角三角形的性质,以及勾股定理的运用,解决问题的关键是掌握:矩形的对角线相等且互相平分.7、A【解析】

本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【详解】A.方程x2−1=0符合一元二次方程的一般形式,正确;B.方程x3+2x+1=0的最高次数是3,故错误;C.方程3x+2=3化简为3x−1=0,该方程为一元一次方程,故错误;D.方程x2+2y=0含有两个未知数,为二元二次方程,故错误;故选A.【点睛】此题考查一元二次方程的定义,解题关键在于掌握其定义.8、D【解析】试题分析:根据题意得C(-2,0),过点B作BD⊥OC,则BD=CD=,则点B的坐标为(-2-,).考点:菱形的性质.9、B【解析】

原式化简后,估算即可得到结果.【详解】解:原式=65∵64<65<72.25,72.25=8.5∴8<65<8.5∴3<65-5<故选:B.【点睛】此题考查了估算无理数的大小以及二次根式的混合运算,熟练掌握运算法则是解本题的关键.10、C【解析】

本题直接根据勾股定理求解即可.【详解】由勾股定理的变形公式可得:另一直角边长==1.故选C.【点睛】本题考查勾股定理的应用,熟练掌握勾股定理是解题的关键.二、填空题(每小题3分,共24分)11、162【解析】

根据图1和图2得当t=1时,点P到达A处,即AB=1;当S=12时,点P到达点D处,即可求解.【详解】①当t=1时,点P到达A处,即AB=1.故答案是:1;②过点A作AE⊥CD交CD于点E,则四边形ABCE为矩形,∵AC=AD,∴DE=CE=,∴CD=6,故答案是:6;③当S=12时,点P到达点D处,则S=CD•BC=(2AB)•BC=1×BC=12,则BC=2,故答案是:2.【点睛】考查了动点问题的函数图象,注意分类讨论的思想、函数的知识和等腰三角形等的综合利用,具有很强的综合性.12、20%.【解析】

本题的等量关系是2014年的收入×(1+增长率)2=2016年的收入,据此列出方程,再求解.【详解】解:根据题意,得,即.解得:,(不合题意,舍去)故答案为20%.【点睛】本题考查了一元二次方程应用中求平均变化率的知识.解这类题的一般思路和方法是:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的一元二次方程方程为a(1±x)2=b.13、39【解析】

根据角平分线和平行得到等腰三角形ABE和等腰三角形CDE和直角三角形BCE,根据勾股定理求得BC=13cm,根据等腰三角形性质得到AB,CD,从而求得周长.【详解】在中,∵,AB=CD∴∵BE、CE分别平分∠ABC、∠BCD∴∴,∴∵∴∵BE平分∴∴,同理可得,∴∴的周长为:故答案为:.【点睛】本题考查了等腰三角形和直角三角形的性质,解题的关键在于利用等腰三角形和直角三角形的性质求得平行四边形中一组对边的长度.14、24cm220cm【解析】分析:菱形的面积等于对角线积的一半;菱形的对角线互相垂直且平分构建直角三角形后,用勾股定理求.详解:根据题意得,菱形的面积为×6×8=24cm2;菱形的周长为4×=4×5=20cm.故答案为24cm2;20cm.点睛:本题考查了菱形的性质,菱形的对角线互相平分且垂直,菱形的面积等于对角线积的一半,菱形中常常根据对角线的性质构造直角三角形,用勾股定理求线段的长.15、173.1.【解析】

根据加权平均数的定义求解可得.【详解】解:(172×3+173×2+174×2+171×3)÷(3+2+2+3)=(116+346+348+121)÷10=1731÷10=173.1(cm)答:该篮球队队员平均身高是173.1cm.故答案为:173.1.【点睛】本题主要考查加权平均数,熟练掌握加权平均数的定义是解题的关键.16、2【解析】

设至少答对x道题,总分才不会低于1,根据对1题给5分,错1题扣3分,不答题不给分也不扣分.小华有3题未做,总分不低于2分,可列不等式求解.【详解】解:设至少答对x道题,总分才不会低于1,根据题意,得5x-3(20-x-3)≥2,解之得x≥14.5.答:至少答对2道题,总分才不会低于1.故答案是:2.【点睛】本题考查了一元一次不等式的应用,理解题意找到题目中的不等关系列不等式是解决本题的关键.17、【解析】【分析】如图所示,过点A作AM⊥BC,垂足为M,先证明△ABE是等边三角形,从而求得BE=AB=2,继而求得AM长,再证明四边形AECF是平行四边形,继而根据平行四边形的面积公式进行计算即可求得.【详解】如图所示,过点A作AM⊥BC,垂足为M,∵四边形ABCD是平行四边形,∴AD//BC,∴∠B=180°-∠BAD=180°-120°=60°,∠DAE=∠AEB,∵AE平分∠BAD,∠BAD=120°,∴∠DAE=60°,∴∠AEB=60°,∴△ABE是等边三角形,∴BE=AB=2,∴BM=1,AM=,又∵CF//AE,∴四边形AECF是平行四边形,∵CE=BC-BE=3-2=1,∴S四边形AECF=CE•AM=,故答案为:.【点睛】本题考查了平行四边形的判定与性质、等边三角形的判定与性质、勾股定理等,正确添加辅助线、熟练应用相关的定理与性质是解题的关键.18、【解析】

先用树状图将所有可能的情况列出来,然后找到恰好选中化学、生物两科的情况数,然后利用概率公式等于恰好选中化学、生物两科的情况数与总情况数之比即可求解.【详解】设思想政治、地理、化学、生物(分别记为A、B、C、D),画树状图如图所示,由图可知,共有12种等可能结果,其中该同学恰好选中化学、生物两科的有2种结果,所以该同学恰好选中化学、生物两科的概率为=.故答案为:.【点睛】本题主要考查树状图或列表法求随机事件的概率,掌握树状图或列表法及概率公式是解题的关键.三、解答题(共66分)19、(1)5;(2)6+2【解析】

(1)先把各二次根式化为最简二次根式,然后合并即可;(2)利用完全平方公式和平方差公式计算.【详解】解:(1)原式=2+4-=5;(2)原式=2+2+3-(2-3)=5+2+1=6+2.【点睛】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.利用乘法公式计算是解决(2)小题的关键.20、(1)每部型手机的销售利润为元,每部型手机的销售利润为元;(2)①;②手机店购进部型手机和部型手机的销售利润最大;(3)手机店购进部型手机和部型手机的销售利润最大.【解析】

(1)设每部型手机的销售利润为元,每部型手机的销售利润为元,根据题意列出方程组求解即可;(2)①根据总利润=销售A型手机的利润+销售B型手机的利润即可列出函数关系式;②根据题意,得,解得,根据一次函数的增减性可得当当时,取最大值;(3)根据题意,,,然后分①当时,②当时,③当时,三种情况进行讨论求解即可.【详解】解:(1)设每部型手机的销售利润为元,每部型手机的销售利润为元.根据题意,得,解得答:每部型手机的销售利润为元,每部型手机的销售利润为元.(2)①根据题意,得,即.②根据题意,得,解得.,,随的增大而减小.为正整数,当时,取最大值,.即手机店购进部型手机和部型手机的销售利润最大.(3)根据题意,得.即,.①当时,随的增大而减小,当时,取最大值,即手机店购进部型手机和部型手机的销售利润最大;②当时,,,即手机店购进型手机的数量为满足的整数时,获得利润相同;③当时,,随的增大而增大,当时,取得最大值,即手机店购进部型手机和部型手机的销售利润最大.【点睛】本题主要考查一次函数的应用,二元一次方程组的应用,解此题的关键在于熟练掌握一次函数的增减性.21、(1)25人(2)37分(3)第二次测试中得4分的学生有15人、得5分的学生有30人.【解析】

(1)根据频数、频率和总量的关系:频数=总量频率计算即可.(2)平均数是指在一组数据中所有数据之和再除以数据的个数,据此计算即可.(3)设第二次测试中得4分的学生有x人、得5分的学生有y人,根据“得4分和5分的人数共有45人”和“平均分比第一次提高了0.8分”列方程组求解即可.【详解】解:(1)本次测试的学生中,得4分的学生有人.(2)本次测试的平均分平均分(分).(3)设第二次测试中得4分的学生有x人、得5分的学生有y人,根据题意,得:,解得:.答:第二次测试中得4分的学生有15人、得5分的学生有30人.22、(1)见解析;(2)①,②见解析.【解析】

(1)根据AD是△ABC的中线得到BD=CD,根据对顶角相等得到∠FDC=∠EDB,又因为∠DFC=∠DEB=90°,即可证得△BDE≌△CDF,继而证出DE=DF;(2)设BH=11x,HC=5x,则BD=CD=BC=8x,DH=3x,HC=5x,根据EH∥AB可得△EDH∽△ADB,再根据相似三角形对应边成比例以及DE=DF得到的值;②进一步求出的值,得到,再根据平行线分线段成比例定理证得FH∥AC,即PH∥AC,再根据两组对边分别平行的四边形是平行四边形这一定理即可证得四边形HGAP为平行四边形.【详解】解:(1)∵AD是△ABC的中线,∴BD=CD,∵∠FDC和∠EDB是对顶角,∴∠FDC=∠EDB,又∵BE⊥AE,CF⊥AE,∴∠DFC=∠DEB=90°,∴△BDE≌△CDF(AAS),∴DE=DF.(2)设则①∵EH∥AB∴△EDH∽△ADB∴∵∴②∵∴∵∴FH∥AC∴PH∥AC∵EG∥AB∴四边形HGAP为平行四边形【点睛】本题主要考查了三角形中线的性质、全等三角形的判定和性质、相似三角形的判定与性质、平行线分线段成比例定理以及平行四边形的判定等知识,解题的关键是理解题意,掌握数形结合的思想并学会灵活运用知识点.23、证明见解析【解析】

根据平行四边形性质得出AD//BC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论