




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
天津市部分区2024届八年级下册数学期末学业水平测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列图形既是轴对称图形,又是中心对称图形的是()A. B. C. D.2.菱形具有而矩形不一定具有的性质是()A.对角相等 B.四条边都相等C.邻角互补 D.对角线互相平分3.已知m=30,则()A.4<m<5 B.6<m<7 C.5<m<6 D.7<m<84.某种长途电话的收费方式为,接通电话的第一分钟收费a元,之后每一分钟收费b元,若某人打此种长途电话收费8元钱,则他的通话时间为A.分钟 B.分钟 C.分钟 D.分钟5.下列调查中,适合进行普查的是()A.一个班级学生的体重B.我国中学生喜欢上数学课的人数C.一批灯泡的使用寿命D.《新闻联播》电视栏目的收视率6.如图,已知正比例函数与一次函数的图象交于点.下面有四个结论:①;②;③当时,;④当时,.其中正确的是()A.①② B.②④ C.③④ D.①③7.如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点(且点P不与点B、C重合),PE⊥AB于E,PF⊥AC于F.则EF的最小值为()A.4 B.4.8 C.5.2 D.68.如图,在中,已知,,,则的长为()A.4 B.5 C.6 D.79.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是()A.x(x+1)=210 B.x(x﹣1)=210C.2x(x﹣1)=210 D.x(x﹣1)=21010.将直线向下平移个单位长度得到新直线,则的值为()A. B. C. D.11.通过估算,估计+1的值应在()A.2~3之间 B.3~4之间 C.4~5之间 D.5~6之间12.下列根式中,与为同类二次根式的是()A. B. C. D.二、填空题(每题4分,共24分)13.如图所示,在菱形中,对角线与相交于点.OE⊥AB,垂足为,若,则的大小为____________.14.计算:=__.15.甲、乙两车从城出发匀速行驶至城在个行驶过程中甲乙两车离开城的距离(单位:千米)与甲车行驶的时间(单位:小时)之间的函数关系如图所示.则下列结论:①两城相距千米;②乙车比甲车晚出发小时,却早到小时;③乙车出发后小时追上甲车;④在乙车行驶过程中.当甲、乙两车相距千米时,或,其中正确的结论是_________.16.已知1<x<5,化简+|x-5|=____.17.将一次函数的图象沿轴方向向右平移1个单位长度得到的直线解析式为_______.18.一个三角形的两边的长分别是3和5,要使这个三角形为直角三角形,则第三条边的长为_____.三、解答题(共78分)19.(8分)下面是小明设计的“作矩形ABCD”的尺规作图过程:已知:在Rt△ABC中,∠ABC=90°.求作:矩形ABCD.作法:如图①以点B为圆心,AC长为半径作弧;②以点C为圆心,AB长为半径作弧;③两弧交于点D,A,D在BC同侧;④连接AD,CD.所以四边形ABCD是矩形,根据小明设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:链接BD.∵AB=________,AC=__________,BC=BC∴ΔABC≌ΔDCB∴∠ABC=∠DCB=90°∴AB∥CD.∴四边形ABCD是平行四边形∵∠ABC=90°∴四边形ABCD是矩形.(_______________)(填推理的依据)20.(8分)完成下面推理过程如图,已知DE∥BC,DF、BE分别平分∠ADE、∠ABC,可推得∠FDE=∠DEB的理由:∵DE∥BC(已知)∴∠ADE=.()∵DF、BE分别平分∠ADE、∠ABC,∴∠ADF=,∠ABE=.()∴∠ADF=∠ABE∴DF∥.()∴∠FDE=∠DEB.()21.(8分)如图1,以矩形的顶点为原点,所在直线为轴,所在直线为轴,建立平面直角坐标系,顶点为点的抛物线经过点,点.(1)写出抛物线的对称轴及点的坐标,(2)将矩形绕点顺时针旋转得到矩形.①当点恰好落在的延长线上时,如图2,求点的坐标.②在旋转过程中,直线与直线分别与抛物线的对称轴相交于点,点.若,求点的坐标.22.(10分)某市团委举办“我的中国梦”为主题的知识竞赛,甲、乙两所学校参赛人数相等,比赛结束后,发现学生成绩分别为70分,80分,90分,100分,并根据统计数据绘制了如下不完整的统计图表:乙校成绩统计表分数(分)人数(人)707809011008(1)在图①中,“80分”所在扇形的圆心角度数为;(2)请你将图②补充完整;(3)求乙校成绩的平均分;(4)经计算知S甲2=135,S乙2=175,请你根据这两个数据,对甲、乙两校成绩作出合理评价.23.(10分)如图,在▱ABCD中,AC为对角线,BF⊥AC,DE⊥AC,F、E为垂足,求证:BF=DE.24.(10分)如图,在平行四边形中,连接,,且,是的中点,是延长线上一点,且.求证:.25.(12分)如图,已知菱形ABCD,AB=AC,E、F分别是BC、AD的中点,连接AE、CF(1)填空∠B=_______°;(2)求证:四边形AECF是矩形.26.由甲、乙两个工程队承包某校校园绿化工程,甲、乙两队单独完成这项工程所需时间比是3︰2,两队合做6天可以完成.(1)求两队单独完成此项工程各需多少天;(2)此项工程由甲、乙两队合做6天完成任务后,学校付给他们20000元报酬,若按各自完成的工程量分配这笔钱,问甲、乙两队各得到多少元.
参考答案一、选择题(每题4分,共48分)1、D【解析】
直接利用轴对称图形和中心对称图形的概念求解.【详解】解:A、是轴对称图形,但不是中心对称图形,故此选项错误;
B、是轴对称图形,不是中心对称图形,故此选项错误;
C、是轴对称图形,不是中心对称图形,故此选项错误;
D、既是中心对称图形也是轴对称图形,故此选项正确.
故选:D.【点睛】此题主要考查了中心对称与轴对称的概念:轴对称的关键是寻找对称轴,两边图象折叠后可重合,中心对称是要寻找对称中心,旋转180°后与原图重合.2、B【解析】
根据菱形和矩形的性质,容易得出结论.【详解】解:菱形的性质有:四条边都相等,对边平行且相等;对角相等,邻角互补;对角线互相垂直平分;矩形的性质有:对边平行且相等;四个角都是直角;对角线互相平分;根据菱形和矩形的性质得出:菱形具有而矩形不一定具有的性质是四条边都相等;故选:B.【点睛】本题考查了菱形和矩形的性质;熟练掌握菱形和矩形的性质是解决问题的关键.3、C【解析】
根据被开方数越大算术平方根越大,可得答案.【详解】∵25<30<36,∴5<m<6,故选:C.【点睛】本题考查了估算无理数的大小,解题关键在于掌握运算法则.4、C【解析】
解决此题要清楚一分钟收费a元,则一分钟后共打了分.再根据题意求出结果.【详解】首先表示一分钟后共打了分,则此人打长途电话的时间共是+1=分。故选C.【点睛】本题考查列代数式,根据题意列出正确的分式是解题关键.5、A【解析】
根据具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查即可解答本题.【详解】A、调查一个班级学生的体重,人数较少,容易调查,因而适合普查,故选项正确;B、调查我国中学生喜欢上数学课的人数,因为人数太多,不容易调查,因而适合抽查,故选项错误;C、调查一批灯泡的使用寿命,调查具有普坏性,因而适合抽查,故选项错误;D、调查结果不是很重要,且要普查要用大量的人力、物力,因而不适合普查,应用抽查,故选项错误.故选A.【点睛】本题考查抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选择,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6、D【解析】
利用两函数图象结合与坐标轴交点进而分别分析得出答案.【详解】如图所示:
∵y1=ax,经过第一、三象限,
∴a>0,故①正确;
∵与y轴交在正半轴,
∴b>0,
故②错误;
∵正比例函数y1=ax,经过原点,
∴当x<0时,函数图像位于x轴下方,∴y1<0;故③正确;
当x>2时,y1>y2,故④错误.
故选:D.【点睛】此题考查一次函数与一元一次不等式,正确利用数形结合分析是解题关键.7、B【解析】
试题解析:如图,连接PA.∵在△ABC中,AB=6,AC=8,BC=10,∴BC2=AB2+AC2,∴∠A=90°.又∵PE⊥AB于点E,PF⊥AC于点F.∴∠AEP=∠AFP=90°,∴四边形PEAF是矩形.∴AP=EF.∴当PA最小时,EF也最小,即当AP⊥CB时,PA最小,∵AB۰AC=BC۰AP,即AP==4.8,∴线段EF长的最小值为4.8;故选B.考点:1.勾股定理、矩形的判定与性质、垂线段最短.8、B【解析】
根据勾股定理计算即可.【详解】由勾股定理得:AB=.故选B.【点睛】本题考查了勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.9、B【解析】
设全组共有x名同学,那么每名同学送出的图书是(x−1)本;则总共送出的图书为x(x−1);又知实际互赠了210本图书,则x(x−1)=210.故选:B.10、D【解析】
直接根据“上加下减”的原则进行解答即可.【详解】解:由“上加下减”的原则可知:直线y=1x+1向下平移n个单位长度,得到新的直线的解析式是y=1x+1-n,则1-n=-1,解得n=1.故选:D.【点睛】本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.11、B【解析】
先估算出在和之间,即可解答.【详解】,,,故选:.【点睛】本题考查了估算无理数的大小,解决本题的关键是确定在哪两个数之间,题型较好,难度不大.12、A【解析】先把二次根式与化为最简二次根式,再进行判断,∵=,四个选项中只有A与被开方数相同,是同类二次根式,故选A二、填空题(每题4分,共24分)13、65°【解析】
先根据菱形的邻角互补求出∠BAD的度数,再根据菱形的对角线平分一组对角求出∠BAO的度数,然后根据直角三角形两锐角互余列式计算即可得解.【详解】在菱形ABCD中,∠ADC=130°,∴∠BAD=180°﹣130°=50°,∴∠BAO∠BAD50°=25°.∵OE⊥AB,∴∠AOE=90°﹣∠BAO=90°﹣25°=65°.故答案为65°.【点睛】本题考查了菱形的邻角互补,每一条对角线平分一组对角的性质,直角三角形两锐角互余的性质,熟练掌握性质是解题的关键.14、2【解析】解:.故答案为.15、①②【解析】
观察图象可判断①②,由图象所给数据可求得甲、乙两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为50,可求得t,可判断④,进而得出答案.【详解】由图象可知,A.
B两城市之间的距离为300km,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,∴①②都正确;设甲车离开A城的距离y与t的关系式为y甲=kt,把(5,300)代入可求得,k=60,∴y甲=60t,设乙车离开A城的距离y与t的关系式为y乙=mt+n,把(1,0)和(4,300)代入可得解得∴y乙=100t−100,令y甲=y乙可得:60t=100t−100,解得t=2.5,即甲、乙两直线的交点横坐标为t=2.5,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,∴③不正确;令|y甲−y乙|=50,可得|60t−100t+100|=50,即|100−40t|=50,当100−40t=50时,可解得t=,当100−40t=−50时,可解得t=,又当t=时,y甲=50,此时乙还没出发,当t=时,乙到达B城,y甲=250;综上可知当t的值为或或或t=时,两车相距50千米,∴④不正确;综上,正确的有①②,故答案为:①②【点睛】本题考查了函数图像的实际应用,准确从图中获取信息并进行分析是解题的关键.16、4【解析】【分析】由已知判断x-1>0,x-5<0,再求绝对值.【详解】因为1<x<5,+|x-5|=|x-1|+|x-5|=x-1+5-x=4故答案为:4【点睛】本题考核知识点:二次根式化简.解题关键点:求绝对值.17、【解析】
平移后的直线的解析式的k不变,设出相应的直线解析式,从原直线解析式上找一个点,然后找到向右平移1个单位,代入设出的直线解析式,即可求得b,也就求得了所求的直线解析式.【详解】解:可设新直线解析式为y=2x+b,∵原直线y=2x经过点(0,0),∴向右平移1个单位,图像经过(1,0),代入新直线解析式得:b=,∴新直线解析式为:.故答案为.【点睛】此题主要考查了一次函数图象与几何变换,用到的知识点为:平移不改变直线解析式中的k,关键是得到平移后函数图像经过的一个具体点.18、4或【解析】
解:①当第三边是斜边时,第三边的长的平方是:32+52=34;②当第三边是直角边时,第三边长的平方是:52-32=25-9=16=42,故答案是:4或.三、解答题(共78分)19、(1)见解析;(2)CD,BD,有一个角是直角的平行四边形是矩形【解析】
(1)根据作法画出对应的几何图形即可;
(2)先利用作图证明△ABC≌△DCB,得AB∥CD,根据一组对边平行且相等的四边形是平行四边形,由有一个角是直角的平行四边形是矩形可得结论.【详解】解:(1)如图1,四边形ABCD为所作;
(2)完成下面的证明:
证明:如图2,连接BD.
∵AB=CD,AC=BD,BC=BC,
∴△ABC≌△DCB(SSS).
∴∠ABC=∠DCB=90°.
∴AB∥CD.
∴四边形ABCD是平行四边形.
∵∠ABC=90°
∴四边形ABCD是矩形.(有一个角是直角的平行四边形是矩形)
故答案为:CD,BD,有一个角是直角的平行四边形是矩形.【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了平行四边形和矩形的判定方法.20、∠ABC;两直线平行,同位角相等;∠ADE;∠ABC;角平分线定义;DF∥BE;同位角相等,两直线平行;两直线平行,内错角相等【解析】
根据平行线的性质得出∠ADE=∠ABC,根据角平分线定义得出∠ADF=∠ADE,∠ABE=∠ABC,推出∠ADF=∠ABE,根据平行线的判定得出DF∥BE即可.【详解】∵DE∥BC(已知),∴∠ADE=∠ABC(两直线平行,同位角相等),∵DF、BE分别平分ADE、∠ABC,∴∠ADF=∠ADE,∠ABE=∠ABC(角平分线定义),∴∠ADF=∠ABE,∴DF∥BE(同位角相等,两直线平行),∴∠FDE=∠DEB(两直线平行,内错角相等).故答案是:∠ABC,两直线平行,同位角相等,∠ADE,∠ABC,角平分线定义,BE,同位角相等,两直线平行,两直线平行,内错角相等.【点睛】考查了平行线的性质和判定的应用,能熟记平行线的性质和判定定理是解此题的关键.21、(1)对称轴:直线,;(2)①;②,.【解析】
(1)首先根据矩形的性质以及A、C点的坐标确定点B的坐标,再利用待定系数法确定该抛物线的解析式.(2)①连结证明即可解答②用全等或面积法证得,再分情况解得即可【详解】解:(1)将y=0代入得C点的坐标为(0,1)则OC为1,则AB=1及B点的坐标为(2,1),再代入即可得对称轴:直线(2)①连结,易知,在和中,②可用全等或面积法证得.(两张等宽纸条重叠部分为菱形)情况1:,如图.设,,在中,(舍去),情况2:,如图.此时点与点重合,综上所述:,.【点睛】本题考查二次函数,熟练掌握计算法则是解题关键.22、(1)54°;(2)见解析;(3)85;(4)甲班20同名同学的成绩比较整齐.【解析】试题分析:(1)根据统计图可知甲班70分的有6人,从而可求得总人数,然后可求得成绩为80分的同学所占的百分比,最后根据圆心角的度数=360°×百分比即可求得答案;(2)用总人数减去成绩为70分、80分、90分的人数即可求得成绩为100分的人数,从而可补全统计图;(3)先求得乙班成绩为80分的人数,然后利用加权平均数公式计算平均数;(4)根据方差的意义即可做出评价.解:(1)6÷30%=20,3÷20=15%,360°×15%=54°;(2)20﹣6﹣3﹣6=5,统计图补充如下:(3)20﹣1﹣7﹣8=4,=85;(4)∵S甲2<S乙2,∴甲班20同名同学的成绩比较整齐.23、证明见解析【解析】
由平行四边形的性质可知AD=BC,∠DAE=∠BCF,由垂直的定义可知∠DEA=∠BFC=90°,由全等三角形的判定方法可知△AED≌△CFB,进而得到BF=DE.【详解】∵四边形ABCD是平行四边形,∴AD=BC,∠DAE=∠BCF,∵DE⊥AC于E,BF⊥AC于F,∴∠DEA=∠BFC=90°.在△AED和△BFC中,,∴△AED≌△CFB,∴BF=DE.【点睛】本题考查了平行四边形的性质,以及全等三角形的性质与判定,是中考常见的题目.24、证明步骤见解析【解析】
过E分别做CF和DC延长线的垂线,垂足分别是G,H,利用HL证明Rt△FGE≌Rt△DHE,得到∠GFE=∠EDH,再根据三角形内角和得出∠FED=∠FCD=90°,即证明.【详解】解:如图,过E分别做CF和DC延长线的垂线,垂足分别是G,H,∵AC=CD,AC⊥CD,∴∠CAD=∠CDA=∠ACB=∠BCH=4
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 冷饮饮料分层管理制度
- 汽车集市装修方案(3篇)
- 平台规范售价管理制度
- 密码电报撰写管理制度
- 分享经济公司管理制度
- 学校营养早餐管理制度
- 协会项目绩效管理制度
- 古建住宅改造方案(3篇)
- 菜窖改造维修方案(3篇)
- 临建费用分摊方案(3篇)
- 租户装修期内退租协议书
- GB/T 36066-2025洁净室及相关受控环境检测技术要求与应用
- 西藏事业单位c类历年真题
- 2024年秋儿童发展问题的咨询与辅导终考期末大作业案例分析1-5答案
- 湖南省长沙市雅礼教育集团2023-2024学年七年级下学期期末语文试题
- (正式版)JBT 11270-2024 立体仓库组合式钢结构货架技术规范
- 婚介所个人资料登记表格
- 注册安全工程师安全生产技术培训课件
- 电商仓库流程及诊断
- 施工场地平整施工方案
- YYT 1182-2020 核酸扩增检测用试剂(盒)
评论
0/150
提交评论