




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
内蒙古2024年八年级数学第二学期期末教学质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,在矩形ABCD中,AB=10,BC=5.若点M、N分别是线段ACAB上的两个动点,则BM+MN的最小值为()A.10 B.8 C.5 D.62.已知整数x满足﹣5≤x≤5,y1=x+1,y2=2x+4,对于任意一个x,m都取y1、y2中的最小值,则m的最大值是()A.﹣4B.﹣6C.14D.63.如图,菱形ABCD中,,AB=4,则以AC为边长的正方形ACEF的周长为()A.14 B.15 C.16 D.174.如图,的对角线、交于点,平分交于点,,,连接.下列结论:①;②平分;③;④其中正确的个数有()A.个 B.个 C.个 D.个5.下列运算错误的是()A. B.C. D.6.若在实数范围内有意义,则的取值范围是()A. B. C. D.且7.对于反比例函数,下列说法不正确的是()A.点在它的图像上 B.当时,随的增大而增大C.它的图像在第二、四象限 D.当时,随的增大而减小8.等腰三角形的底边和腰长分别是10和12,则底边上的高是()A.13 B.8 C. D.9.已知点P的坐标为(a,b)(a>0),点Q的坐标为(c,2),且|a-c|+=0,将线段PQ向右平移a个单位长度,其扫过的面积为24,那么a+b+c的值为()A.12 B.14 C.16 D.2010.若,则的值()A. B. C.–7 D.711.下列多项式中,可以使用平方差公式进行因式分解的是()A.x+1 B.﹣x+1 C.x+x D.x+2x+112.设,a在两个相邻整数之间,则这两个整数是()A.1和2 B.2和3 C.3和4 D.4和5二、填空题(每题4分,共24分)13.已知三角形的三条中位线的长分别为5cm、6cm、10cm,则这个三角形的周长是_____cm.14.勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是把图1放入长方形内得到的,,AB=3,AC=4,点D,E,F,G,H,I都在长方形KLMJ的边上,则长方形KLMJ的面积为___.15.如图1,四边形ABCD中,AB∥CD,∠B=90°,AC=AD.动点P从点B出发沿折线B-A-D-C方向以1单位/秒的速度匀速运动,在整个运动过程中,△BCP的面积S与运动时间t(秒)的函数图象如图2所示,写出①AB=__________;②CD=_______________(提示:过A作CD的垂线);③BC=_______________.16.若在实数范围内有意义,则的取值范围为_________________.17.一个三角形的底边长为5,高为h可以任意伸缩.写出面积S随h变化的函数解析式_____.18.一次函数,若y随x的增大而增大,则的取值范围是.三、解答题(共78分)19.(8分)如图,在中,AB=2AD,DE平分∠ADC,交AB于点E,交CB的延长线于点F,EG∥AD交DC于点G.⑴求证:四边形AEGD为菱形;⑵若,AD=2,求DF的长.20.(8分)已知城有肥料200吨,城有肥料300吨.现将这些肥料全部运往,两乡.乡需要的肥料比乡少20吨.从城运往,两乡的费用分别为每吨20元和25元;从城运往,两乡的费用分别为每吨15元和24元.(1)求,两乡各需肥料多少吨?(2)设从城运往乡的肥料为吨,全部肥料运往,两乡的总运费为元,求与之间的函数关系式,并直接写出自变量的取值范围;(3)因近期持续暴雨天气,为安全起见,从城到乡需要绕道运输,实际运费每吨增加了元(),其它路线运费不变.此时全部肥料运往,两乡所需最少费用为10520元,则的值为__(直接写出结果).21.(8分)菱形ABCD中,两条对角线AC、BD相交于点O,点E和点F分别是BC和CD上一动点,且∠EOF+∠BCD=180°,连接EF.(1)如图2,当∠ABC=60°时,猜想三条线段CE、CF、AB之间的数量关系___;(2)如图1,当∠ABC=90°时,若AC=42,BE=32,求线段EF(3)如图3,当∠ABC=90°,将∠EOF的顶点移到AO上任意一点O′处,∠EO′F绕点O′旋转,仍满足∠EO′F+∠BCD=180°,O′E交BC的延长线一点E,射线O′F交CD的延长线上一点F,连接EF探究在整个运动变化过程中,线段CE、CF,O′C之间满足的数量关系,请直接写出你的结论.22.(10分)(1)先化简,再求值:,其中;(2)三个数4,,在数轴上从左到右依次排列,求a的取值范围.23.(10分)如图,在矩形ABCD中,M为BC边上一点,连接AM,过点D作DE⊥AM,垂足为E,若DE=DC=5,AE=2EM.(1)求证:ΔAED≅ΔMBA;(2)求BM的长(结果用根式表示).24.(10分)如图,已知一次函数y=﹣x+b的图象过点A(0,3),点p是该直线上的一个动点,过点P分别作PM垂直x轴于点M,PN垂直y轴于点N,在四边形PMON上分别截取:PC=MP,MB=OM,OE=ON,ND=NP.(1)b=;(2)求证:四边形BCDE是平行四边形;(3)在直线y=﹣x+b上是否存在这样的点P,使四边形BCDE为正方形?若存在,请求出所有符合的点P的坐标;若不存在,请说明理由.25.(12分)设每个小正方形网格的边长为1,请在网格内画出,使它的顶点都在格点上,且三边长分别为2,,.(1)求的面积;(2)求出最长边上的高.26.(1)化简:;(2)先化简,再求值:,选一个你喜欢的数求值.
参考答案一、选择题(每题4分,共48分)1、B【解析】
过B点作AC的垂线,使AC两边的线段相等,到E点,过E作EF垂直AB交AB于F点,EF就是所求的线段.【详解】解:过B点作AC的垂线,使AC两边的线段相等,到E点,过E作EF垂直AB交AB于F点,AC=5,AC边上的高为2,所以BE=4.∵△ABC∽△EFB,∴,即EF=1.故选B.考点:轴对称-最短路线问题.2、D【解析】
根据题意可得知﹣5≤x≤5,当x=5时,m取最大值,将x=5代入即可得出结论.【详解】解:已知对于任意一个x,m都取y1,y2中的最小值,且求m得最大值,因为y1,y2均是递增函数,所以在x=5时,m取最大值,即m取x=5时,y1,y2中较小的一个,是y1=6.故选D.【点睛】本题考察直线图像的综合运用,能够读懂题意确定m是解题关键.3、C【解析】根据菱形得出AB=BC,得出等边三角形ABC,求出AC,长,根据正方形的性质得出AF=EF=EC=AC=1,求出即可:∵四边形ABCD是菱形,∴AB=BC.∵∠B=60°,∴△ABC是等边三角形.∴AC=AB=1.∴正方形ACEF的周长是AC+CE+EF+AF=1×1=2.故选C.4、C【解析】
求得∠ADB=90°,即AD⊥BD,即可得到S▱ABCD=AD•BD;依据∠CDE=60°,∠BDE=30°,可得∠CDB=∠BDE,进而得出DB平分∠CDE;依据Rt△AOD中,AO>AD,即可得到AO>DE;依据OE是△ABD的中位线,即可得到.【详解】解:∵∠BAD=∠BCD=60°,∠ADC=120°,DE平分∠ADC,
∴∠ADE=∠DAE=60°=∠AED,
∴△ADE是等边三角形,∴E是AB的中点,
∴DE=BE,∴∠ADB=90°,即AD⊥BD,
∴S▱ABCD=AD•BD,故①正确;
∵∠CDE=60°,∠BDE=30°,
∴∠CDB=∠BDE,
∴DB平分∠CDE,故②正确;
∵Rt△AOD中,AO>AD,
∴AO>DE,故③错误;
∵O是BD的中点,E是AB的中点,
∴OE是△ABD的中位线,∴,故④正确;正确的有3个故选C【点睛】本题考查了平行四边形的性质,等边三角形的判定和性质,直角三角形的性质,平行四边形的面积公式的综合运用,熟练掌握性质定理和判定定理是解题的关键.5、A【解析】
根据二次根式的乘法法则和二次根式的性质逐个判断即可.【详解】解:A、,故本选项符合题意;B、,故本选项不符合题意;C、,故本选项不符合题意;D、,故本选项不符合题意;故选:A.【点睛】本题考查了二次根式的乘除和二次根式的性质,能灵活运用二次根式的乘法法则进行化简是解此题的关键,注意.6、D【解析】
根据二次根式的性质和分式的意义,被开方数大于等于1,分母不等于1,就可以求解.【详解】根据二次根式有意义,分式有意义得:x+1≥1且x≠1,解得:x≥-1且x≠1.故选D.【点睛】本题考查的知识点为:分式有意义,分母不为1;二次根式的被开方数是非负数.7、D【解析】
根据反比例函数图象的性质对各选项分析判断后利用排除法求解.【详解】A.∵=3,∴点(−3,3)在它的图象上,故本选项正确;B.k=−9<0,当x>0时,y随x的增大而增大,故本选项正确;C.k=−9<0,∴它的图象在第二、四象限,故本选项正确;D.k=−9<0,当x<0时,y随x的增大而增大,故本选项错误。故选D.【点睛】此题考查反比例函数的性质,解题关键在于根据反比例函数图象的性质进行分析8、D【解析】
先作底边上的高,由等腰三角形的性质和勾股定理即可求出此高的长度.【详解】解:作底边上的高并设此高的长度为x,由等腰三角形三线合一的性质可得高线平分底边,根据勾股定理得:52+x2=122,解得x=【点睛】本题考点:等腰三角形底边上高的性质和勾股定理,等腰三角形底边上的高所在直线为底边的中垂线.然后根据勾股定理即可求出底边上高的长度.9、C【解析】
有非负数的性质得到a=c,b=8,,PQ∥y轴,由于其扫过的图形是矩形可求得,代入即可求得结论.【详解】解:|a-c|+=0,∴a=c,b=8,,PQ∥y轴,∴PQ=8-2=6,将线段PQ向右平移a个单位长度,其扫过的图形是边长为a和6的矩形,,∴a=4,∴c=4,∴a+b+c=4+8+4=16;故选:C.【点睛】本题主要考查了非负数的性质,坐标的平移,矩形的性质,能根据点的坐标判断出PQ∥y轴,进而求得PQ是解题的关键.10、D【解析】
将两边平方后,根据完全平方公式化简即可得出结果.【详解】解:∵∴∴即:故选:D.【点睛】本题考查了完全平方公式的应用,熟悉完全平方公式的性质是解题的关键.11、B【解析】
根据提公因式法、平方差公式、完全平方公式进行因式分解,判断即可.【详解】A、x2+1,不能进行因式分解;B、﹣x2+1=1﹣x2=(1+x)(1﹣x),可以使用平方差公式进行因式分解;C、x2+x=x(x+1),可以使用提公因式法进行因式分解;D、x2+2x+1=(x+1)2,可以使用完全平方公式进行因式分解;故选:B.【点睛】此题考查因式分解,掌握提公因式法、平方差公式、完全平方公式进行因式分解的一般步骤是解题的关键.12、C【解析】
首先得出的取值范围,进而得出-1的取值范围.【详解】∵,∴,故,故选C.【点睛】此题主要考查了估算无理数的大小,正确得出的取值范围是解题关键.二、填空题(每题4分,共24分)13、1【解析】
根据三角形的中位线定理解答即可.【详解】∵三角形的三条中位线的长分别是5cm、6cm、10cm,∴三角形的三条边分别是10cm、12cm、20cm.∴这个三角形的周长=10+12+20=1cm.故答案是:1.【点睛】本题考查了三角形的中位线定理,熟知三角形的中位线定理是解决问题的关键.14、110【解析】
延长AB交KF于点O,延长AC交GM于点P,可得四边形AOLP是正方形,然后求出正方形的边长,再求出矩形KLMJ的长与宽,然后根据矩形的面积公式列式计算即可得解.【详解】如图,延长AB交KF于点O,延长AC交GM于点P,则四边形OALP是矩形.
∵∠CBF=90°,
∴∠ABC+∠OBF=90°,
又∵直角△ABC中,∠ABC+∠ACB=90°,
∴∠OBF=∠ACB,
在△OBF和△ACB中,
,
∴△OBF≌△ACB(AAS),
∴AC=OB,
同理:△ACB≌△PGC,
∴PC=AB,
∴OA=AP,
所以,矩形AOLP是正方形,
边长AO=AB+AC=3+4=7,
所以,KL=3+7=10,LM=4+7=11,
因此,矩形KLMJ的面积为10×11=110.【点睛】本题考查勾股定理,解题的关键是读懂题意,掌握勾股定理.15、162【解析】
根据图1和图2得当t=1时,点P到达A处,即AB=1;当S=12时,点P到达点D处,即可求解.【详解】①当t=1时,点P到达A处,即AB=1.故答案是:1;②过点A作AE⊥CD交CD于点E,则四边形ABCE为矩形,∵AC=AD,∴DE=CE=,∴CD=6,故答案是:6;③当S=12时,点P到达点D处,则S=CD•BC=(2AB)•BC=1×BC=12,则BC=2,故答案是:2.【点睛】考查了动点问题的函数图象,注意分类讨论的思想、函数的知识和等腰三角形等的综合利用,具有很强的综合性.16、【解析】
根据根式有意义的条件,得到不等式,解出不等式即可【详解】要使有意义,则需要,解出得到【点睛】本题考查根式有意义的条件,能够得到不等式是解题关键17、【解析】
直接利用三角形面积求法得出函数关系式.【详解】解:∵一个三角形的底边长为5,高为h可以任意伸缩,∴面积S随h变化的函数解析式为:S=h•5=h.故答案为S=h.【点睛】此题主要考查了函数关系式,正确记忆三角形面积是解题关键.18、.【解析】一次函数的图象有两种情况:①当时,函数的值随x的值增大而增大;②当时,函数的值随x的值增大而减小.由题意得,函数的y随x的增大而增大,.三、解答题(共78分)19、(1)证明见解析;(2)4.【解析】
(1)先证出四边形AEGD是平行四边形,再由平行线的性质和角平分线证出∠ADE=∠AED,得出AD=AE,即可得出结论;
(2)连接AG交DF于H,由菱形的性质得出AD=DG,AG⊥DE,证出△ADG是等边三角形,AG=AD=2,得出∠ADH=30°,AH=AG=1,由直角三角形的性质得出DH=AH=,得出DE=2DH=2,证出DG=BE,由平行线的性质得出∠EDG=∠FEB,∠DGE=∠C=∠EBF,证明△DGE≌△EBF得出DE=EF,即可得出结果.【详解】(1)证明:∵四边形ABCD是平行四边形,
∴AB∥DC,
∴∠AED=∠GDE,
∵AE∥DG,EG∥AD,
∴四边形AEGD是平行四边形,
∵DE平分∠ADC,
∴∠ADE=∠GDE,
∴∠ADE=∠AED,
∴AD=AE,
∴四边形AEGD为菱形;
(2)解:连接AG交DF于H,如图所示:
∵四边形AEGD为菱形,
∴AD=DG,AG⊥DE,
∵∠ADC=60°,AD=2,
∴△ADG是等边三角形,AG=AD=2,
∴∠ADH=30°,AH=AG=1,
∴DH=AH=,
∴DE=2DH=2,
∵AD=AE,AB=2AD,AD∥CF,EG∥AD,
∴DG=BE,∠EDG=∠FEB,∠DGE=∠C=∠EBF,
在△DGE和△EBF中,∴△DGE≌△EBF(ASA),
∴DE=EF,
∴DF=2DE=4.【点睛】本题考查菱形的判定与性质、平行四边形的性质、全等三角形的判定与性质、等腰三角形的判定、等边三角形的判定与性质、直角三角形的性质等知识;熟练掌握菱形的判定与性质是解题的关键.20、(1)140吨,160吨;(1);(3)a=1【解析】
(1)设C乡需肥料m吨,根据题意列方程得答案;(1)根据:运费=运输吨数×运输费用,得一次函数解析式;(3)利用一次函数的性质列方程解答即可.【详解】(1)设乡需要肥料吨,列方程得解得,即两乡分别需肥料140吨,160吨;(1),取值范围为:;(3)根据题意得,(-4+a)x+11000=10510,由(1)可知k=-4<0,w随x的增大而减小,所以x=140时,w有最小值,所以(-4+a)×140+11000=10510,解得a=1.【点睛】本题考查一次函数的应用,属于一般的应用题,解答本题的关键是根据题意得出y与x的函数关系式,另外同学们要掌握运用函数的增减性来判断函数的最值问题.21、(1)CE+CF=12AB;(2)342;(3)CF−CE=【解析】
(1)如图1中,连接EF,在CO上截取CN=CF,只要证明△OFN≌△EFC,即可推出CE+CF=OC,再证明OC=12AB(2)先证明△OBE≌△OCF得到BE=CF,在Rt△CEF中,根据CE2+CF2=EF2即可解决问题.(3)结论:CF-CE=2O`C,过点O`作O`H⊥AC交CF于H,只要证明△FO`H≌△EO`C,推出FH=CE,再根据等腰直角三角形性质即可解决问题.【详解】(1)结论CE+CF=12理由:如图1中,连接EF,在CO上截取CN=CF.∵∠EOF+∠ECF=180°,∴O、E.C.F四点共圆,∵∠ABC=60°,四边形ABCD是菱形,∴∠BCD=180°−∠ABC=120°,∴∠ACB=∠ACD=60°,∴∠OEF=∠OCF,∠OFE=∠OCE,∴∠OEF=∠OFE=60°,∴△OEF是等边三角形,∴OF=FE,∵CN=CF,∠FCN=60°,∴△CFN是等边三角形,∴FN=FC,∠OFE=∠CFN,∴∠OFN=∠EFC,在△OFN和△EFC中,FO=FE∠OFN=∠EFCFN=FC∴△OFN≌△EFC,∴ON=EC,∴CE+CF=CN+ON=OC,∵四边形ABCD是菱形,∠ABC=60°,∴∠CBO=30°,AC⊥BD,在RT△BOC中,∵∠BOC=90°,∠OBC=30°,∴OC=12BC=1∴CE+CF=12(2)连接EF∵在菱形ABCD中,∠ABC=90°,∴菱形ABCD是正方形,∴∠BOC=90°,OB=OC,AB=AC,∠OBE=∠OCF=45°,∠BCD=90°∵∠EOF+∠BCD=180°,∴∠EOF=90°,∴∠BOE=∠COF∴△OBE≌△OCF,∴BE=CF,∵BE=32∴CF=32在Rt△ABC中,AB2+BC2=AC2,AC=42∴BC=4,∴CE=52在Rt△CEF中,CE2+CF2=EF2,∴EF=342答:线段EF的长为342(3)结论:CF−CE=2O`C.理由:过点O`作O`H⊥AC交CF于H,∵∠O`CH=∠O`HC=45°,∴O`H=O`C,∵∠FO`E=∠HO`C,∴∠FO`H=∠CO`E,∵∠EO`F=∠ECF=90°,∴O`.C.F.E四点共圆,∴∠O`EF=∠OCF=45°,∴∠O`FE=∠O`EF=45°,∴O`E=O`F,在△FO`H和△EO`C中,FO`=O`E∠FO`H=∠EO`CO`H=O`C∴△FO`H≌△EO`C,∴FH=CE,∴CF−CE=CF−FH=CH=2O`C.【点睛】本题考查正方形的性质、全等三角形的判定和性质、勾股定理、四点共圆等知识,解题的关键是发现四点共圆,添加辅助线构造全等三角形,属于中考压轴题.22、(1)-;(2)【解析】
(1)直接将括号里面通分运算,进而结合分式的加减运算法则计算得出答案;(2)根据题意得出不等式组,进而得出答案.【详解】解:(1)当时,代入得:原式(2)解:根据题意得,解得:,∴原不等式组的解集是﹐∴a的取值范围是﹒【点睛】此题主要考查了分式的化简求值以及不等式组的解法,正确掌握分式的混合运算法则是解题关键.23、(1)见解析;(2)BM=25【解析】
(1)由AAS即可证明ΔAED≅ΔMBA(2)由ΔAED≅ΔMBA可得AE=BM=x由AE=2EM可得EM=x2,利用勾股定理在RtΔAMB【详解】(1)在矩形ABCD中,AB=DC=5,∠B=∠C=90°,AD∥BC,AD=BC∴∠AMB=∠DAE,∵DE=DC,∴AB=DE,∵DE⊥AM,∴∠DEA=∠DEM=90°∴∠AED=∠ABM=90°在ΔAED和ΔMBA中,∠AED=∠ABM∠DAE=∠AMB∴ΔAED≅ΔMBA.(2)设BM=x,∵ΔAED≅ΔMBA∴AE=BM=x又AE=2EM∴EM=在RtΔAMB中,AB=5,AM=32∴AM∴(∴x=25即【点睛】本题考查了矩形的性质、全等三角形的判定与性质、勾股定理,掌握矩形的性质、全等三角形的判定与性质、勾股定理是解题的关键.24、(1)1;(2)证明见解析;(1)在直线y=﹣x+b上存在这样的点P,使四边形BCDE为正方形,P点坐标是(2,2)或(﹣6,6).【解析】分析:(1)根据待定系数法,可得b的值;(2)根据矩形的判定与性质,可得PM与ON,PN与OM的关系,根据PC=MP,MB=OM,OE=ON,NO=NP,可得PC与OE,CM与NE
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广东高一 上数学试卷
- 广西第一次高考数学试卷
- 江门七年级下册数学试卷
- 2025年中国轻质砖行业市场运行现状及投资战略研究报告
- 中国复方龙胆碳酸氢钠行业调查报告
- 中国液体硅酸钠行业调查报告
- 农业产业发展园基础设施建设工程可行性研究报告
- 低空空域数字化管理前沿技术与实践
- 健康活动赛龙舟课件视频
- 药品生产线编制管理办法
- 建设项目使用林地可行性报告
- 新安全生产法2025全文
- 河北省2025年中考数学真题试卷(含答案)
- 感恩地球活动方案
- 福建福州金山中学2024~2025学年高一下册期末考试数学试题含解析
- 2025年中国共产党支部工作条例(试行)暨党支部建设标准化工作知识竞赛考试试题(综合题库)(含答案)
- 2025年广东省高考生物真题(解析版)
- 2024年哈尔滨市道里区执法辅助人员招聘考试真题
- 学堂在线 研究生的压力应对与健康心理 期末考试答案
- 2025年7月自考13811绩效管理试题及答案含解析
- 2025年江苏省扬州树人学校七年级英语第二学期期末综合测试试题含答案
评论
0/150
提交评论