合肥市瑶海区2024年数学八年级下册期末复习检测模拟试题含解析_第1页
合肥市瑶海区2024年数学八年级下册期末复习检测模拟试题含解析_第2页
合肥市瑶海区2024年数学八年级下册期末复习检测模拟试题含解析_第3页
合肥市瑶海区2024年数学八年级下册期末复习检测模拟试题含解析_第4页
合肥市瑶海区2024年数学八年级下册期末复习检测模拟试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

合肥市瑶海区2024年数学八年级下册期末复习检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.《国家宝藏》节目立足于中华文化宝库资源,通过对文物的梳理与总结,演绎文物背后的故事与历史,让更多的观众走进博物馆,让一个个馆藏文物鲜活起来.下面四幅图是我国一些博物馆的标志,其中是中心对称图形的是().A. B. C. D.2.如图,在△ABC中,点D,E,F分别是AB,BC,AC的中点,连接DE,EF,DF,则下列说法不正确的是()A.S△DEF=S△ABCB.△DEF≌△FAD≌△EDB≌△CFEC.四边形ADEF,四边形DBEF,四边形DECF都是平行四边形D.四边形ADEF的周长=四边形DBEF的周长=四边形DECF的周长3.将直线y=-2x-3怎样平移可以得到直线y=-2x的是()A.向上平移2个单位 B.向上平移3个单位C.向下平移2个单位 D.向下平移3个单位4.如图,将一个矩形纸片ABCD,沿着BE折叠,使C、D两点分别落在点、处若,则的度数为A. B. C. D.5.已知四个三角形分别满足下列条件:①一个内角等于另两个内角之和;②三个内角度数之比为3∶4∶5;③三边长分别为7,24,25;④三边长之比为5∶12∶13.其中直角三角形有()A.1个 B.2个 C.3个 D.4个6.已知一次函数的图象如图所示,当时,的取值范围是()A. B. C. D.7.如图,将边长为2的正方形OABC放在平面直角坐标系中,O是原点,点A的横坐标为1,则点C的坐标为()A.(﹣2,1) B.(﹣1,2) C.(,﹣1) D.(﹣,1)8.一个多边形的每一个内角均为,那么这个多边形是()A.七边形 B.六边形 C.五边形 D.正方形9.已知,则下列不等式中不正确的是()A. B. C. D.10.如图,直线的解析式为,直线的解析式为,则不等式的解集是()A. B. C. D.11.若解分式方程产生增根,则m=()A.1 B.0 C.﹣4 D.﹣512.如图,已知菱形ABCD的边长为2,∠DAB=60°,则对角线BD的长是()A.1 B. C.2 D.二、填空题(每题4分,共24分)13.如图,已知点P是∠AOB角平分线上的一点,∠AOB=60°,PD⊥OA,M是OP的中点,DM=4cm,如果点C是OB上一个动点,则PC的最小值为________cm.14.方程x5=81的解是_____.15.将反比例函数的图像绕着原点O顺时针旋转45°得到新的双曲线图像(如图1所示),直线轴,F为x轴上的一个定点,已知,图像上的任意一点P到F的距离与直线l的距离之比为定值,记为e,即.(1)如图1,若直线l经过点B(1,0),双曲线的解析式为,且,则F点的坐标为__________.(2)如图2,若直线l经过点B(1,0),双曲线的解析式为,且,P为双曲线在第一象限内图像上的动点,连接PF,Q为线段PF上靠近点P的三等分点,连接HQ,在点P运动的过程中,当时,点P的坐标为__________.16.为了了解本校八年级学生的体能情况,随机抽查了其中30名学生,测试了1分钟仰卧起坐次数,并给制成如图所示的频数分布直方图,请根据图中信息,计算仰卧起坐次数在次的频率是______17.某市出租车的收费标准是:千米以内(包括千米)收费元,超过千米,每增加千米加收元,则当路程是(千米)()时,车费(元)与路程(千米)之间的关系式(需化简)为:________.18.如图,函数y1=﹣2x和y2=ax+3的图象相交于点A(﹣1,2),则关于x的不等式﹣2x>ax+3的解集是_____三、解答题(共78分)19.(8分)如图,平行四边形ABCD的四个内角的平分线相交成四边形EFGH,求证:(1)EG=HF.(2)EG=BC-AB.20.(8分)如图1,一次函数的图象与反比例函数的图象交于)两点与x轴,y轴分别交于A、B(0,2)两点,如果的面积为6.(1)求点A的坐标;(2)求一次函数和反比例函数的解析式;(3)如图2,连接DO并延长交反比例函数的图象于点E,连接CE,求点E的坐标和的面积21.(8分)已知:AC是平行四边形ABCD的对角线,且BE⊥AC,DF⊥AC,连接DE、BF.求证:四边形BFDE是平行四边形.22.(10分)如图,等腰Rt△ABC中,BA=BC,∠ABC=90°,点D在AC上,将△ABD绕点B沿顺时针方向旋转90°后,得到△CBE(1)求∠DCE的度数;(2)若AB=4,CD=3AD,求DE的长.23.(10分)在中,对角线交于点,将过点的直线绕点旋转,交射线于点,于点,于点,连接.如图当点与点重合时,请直接写出线段的数量关系;如图,当点在线段上时,与有什么数量关系?请说明你的结论;如图,当点在线段的延长线上时,与有什么数量关系?请说明你的结论.24.(10分)在中,,,动点以每秒1个单位的速度从点出发运动到点,点以相同的速度从点出发运动到点,两点同时出发,过点作交直线于点,连接、,设运动时间为秒.(1)当和时,请你分别在备用图1,备用图2中画出符合题意的图形;(2)当点在线段上时,求为何值时,以、、、为顶点的四边形是平行四边形;(3)当点在线段的延长线上时,是否存在某一时刻使,若存在,请求出的值;若不存在,请说明理由.25.(12分)甲,乙两人沿汀江绿道同地点,同方向运动,甲跑步,乙骑车,两人都匀速前行,若甲先出发60s,乙骑车追赶且速度是甲的两倍在运动的过程中,设甲,乙两人相距,乙骑车的时间为,y是t的函数,其图象的一部分如图所示,其中.(1)甲的速度是多少;(2)求a的值,并说明A点坐标的实际意义;(3)当时,求y与t的函数关系式.26.先化简,再求值:其中

参考答案一、选择题(每题4分,共48分)1、A【解析】

根据中心对称图形的定义和图案特点即可解答.【详解】、是中心对称图形,故本选项正确;、不是中心对称图象,故本选项错误;、不是中心对称图象,故本选项错误;、不是中心对称图象,故本选项错误.故选:.【点睛】本题考查中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图完全重合,那么这个图形就叫做中心对称图形.2、D【解析】

根据中位线定理可证DE∥AC,DF∥BC,EF∥AB,即可得四边形ADEF,四边形DECF,四边形BDFE是平行四边形.即可判断各选项是否正确.【详解】连接DF∵点D,E,F分别是AB,BC,AC的中点∴DE∥AC,DF∥BC,EF∥AB∴四边形ADEF,四边形DECF,四边形BDFE是平行四边形∴△ADF≌△DEF,△BDE≌△DEF,△CEF≌△DEF∴△DEF≌△ADF≌△BDE≌△CEF∴S△ADF=S△BDE=S△DEF=S△CEF.∴S△DEF=S△ABC.故①②③说法正确∵四边形ADEF的周长为2(AD+DE)四边形BDFE的周长为2(BD+DF)且AD=BD,DE≠DF,∴四边形ADEF的周长≠四边形BDFE的周长故④说法错误故选:D.【点睛】本题考查了平行四边形的判定,三角形中位线定理,平行四边形的性质,熟练运用中位线定理解决问题是本题的关键.3、B【解析】

根据上加下减,左加右减的平移原则,即可得出答案.【详解】解:根据上加下减的平移原则,直线y=-2x可以看作是由直线y=-2x-3向上平移3个单位得到的;

故选B.【点睛】本题考查一次函数图象与几何变换,属于基础题,关键是掌握上加下减,左加右减的平移原则.4、B【解析】

根据折叠前后对应角相等即可得出答案.【详解】解:设∠ABE=x,

根据折叠前后角相等可知,∠C1BE=∠CBE=50°+x,

所以50°+x+x=90°,

解得x=20°.故选B.【点睛】本题考核知识点:轴对称.解题关键点:理解折叠的意义.5、C【解析】①已知∠A=∠B+∠C,由∠A+∠B+∠C=180°,得2∠A=180°,所以∠A=90°,它是直角三角形;②三个内角之比为3∶4∶1.则这三个内角分别为41°,60°,71°,它是锐角三角形;③④可由勾股定理的逆定理判定是直角三角形.因此①③④是直角三角形,故选C.6、C【解析】试题解析:从图像可以看出当自变量时,y的取值范围在x轴的下方,故故选C.7、D【解析】

首先过点C作CD⊥x轴于点D,过点A作AE⊥x轴于点E,易证得△AOE≌△OCD(AAS),则可得CD=OE=1,OD=AE=,继而求得答案.【详解】解:过点C作CD⊥x轴于点D,过点A作AE⊥x轴于点E,

则∠ODC=∠AEO=90°,

∴∠OCD+∠COD=90°,

∵四边形OABC是正方形,

∴OC=OA,∠AOC=90°,

∴∠COD+∠AOE=90°,

∴∠OCD=∠AOE,

在△AOE和△OCD中,,

∴△AOE≌△OCD(AAS),

∴CD=OE=1,OD=AE=,

∴点C的坐标为:(-,1).

故选:D.【点睛】本题考查了正方形的性质、全等三角形的判定与性质以及勾股定理.注意准确作出辅助线、证得△AOE≌△OCD是解题的关键.8、B【解析】分析:此题主要考查了多边形的内角与外角的关系,先求出这个多边形的每一个外角的度数,再用360°除以一个外角的度数即可得到边数.详解:∵多边形的每一个内角都等于120°,∴多边形的每一个外角都等于180°-120°=60°,∴边数n=360°÷60°=6.故选B..点睛:此题主要考查了多边形的内角与外角的关系,求出每一个外角的度数是解答本题的关键.即先求出这个多边形的每一个外角的度数,再用360°除即可得到边数.9、D【解析】

根据不等式的性质逐项分析即可.【详解】A.∵,∴,故正确;B.∵,∴,故正确;C.∵,∴,故正确;D.∵,∴,故不正确;故选D.【点睛】本题考查了不等式的性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;②不等式两边都乘(或除以)同一个正数,不等号的方向不变;③不等式两边都乘(或除以)同一个负数,不等号的方向改变.10、D【解析】

由图象可以知道,当x=m时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式解集.【详解】不等式对应的函数图象是直线在直线“下方”的那一部分,其对应的的取值范围,构成该不等式的解集.所以,解集应为,直线过这点,把代入易得,.故选:D.【点睛】此题考查一次函数与一元一次不等式,解题关键在于结合函数图象进行解答.11、D【解析】

增根是分式方程化为整式方程后产生的使分式方程的分母为0的根把增根代入化为整式方程的方程即可求出m的值.【详解】解:方程两边都乘,得,原方程增根为,把代入整式方程,得,故选D.【点睛】本题考查了分式方程的增根,增根确定后可按如下步骤进行:化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.12、C【解析】试题分析:∵菱形ABCD的边长为1,∴AD=AB=1,又∵∠DAB=60°,∴△DAB是等边三角形,∴AD=BD=AB=1,则对角线BD的长是1.故选C.考点:菱形的性质.二、填空题(每题4分,共24分)13、1【解析】

根据角平分线的定义可得,再根据直角三角形的性质求得,然后根据角平分线的性质和垂线段最短得到答案.【详解】是角平分线上的一点,,,,M是OP的中点,,,,点C是OB上一个动点,的最小值为P到OB距离,的最小值,故答案为1.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,直角三角形的性质,熟记性质并作出辅助线构造成直角三角形是解题的关键.14、1【解析】

方程两边同时乘以1,可得x5=241=15.即可得出结论.【详解】∵x5=81,∴x5=81×1=241=15,∴x=1,故答案为:1.【点睛】本题考查了高次方程的解法,能够把241写成15是解题的关键.15、F(4,0)【解析】

(1)令y=0求出x的值,结合e=2可得出点A的坐标,由点B的坐标及e=2可求出AF的长度,将其代入OF=OB+AB+AF中即可求出点F的坐标;

(2)设点P的坐标为(x,),则点H的坐标为(1,),由Q为线段PF上靠近点P的三等分点,可得出点Q的坐标为(x+,),利用两点间的距离公式列方程解答即可;【详解】解:(1)如图:当y=0时,±,

解得:x1=2,x2=-2(舍去),

∴点A的坐标为(2,0).

∵点B的坐标为(1,0),

∴AB=1.

∵e=2,

∴,

∴AF=2,

∴OF=OB+AB+AF=4,

∴F点的坐标为(4,0).

故答案为:(4,0).(2)设点P的坐标为(x,),则点H的坐标为(1,).

∵点Q为线段PF上靠近点P的三等分点,点F的坐标为(5,0),

∴点Q的坐标为(x+,).

∵点H的坐标为(1,),HQ=HP,

∴(x+-1)2+(-)2=[(x-1)]2,

化简得:15x2-48x+39=0,

解得:x1=,x2=1(舍去),

∴点P的坐标为(,).故答案为:(,).【点睛】本题考查了两点间的距离、解一元二次方程以及反比例函数的综合应用,解题的关键是:(1)利用特殊值法(点A和点P重合),求出点F的坐标;(2)设出点P的坐标,利用两点间的距离公式找出关于x的一元二次方程;16、0.4【解析】

根据计算仰卧起坐次数在次的频率.【详解】由图可知:仰卧起坐次数在次的频率.故答案为:.【点睛】此题考查了频率、频数的关系:.17、【解析】

根据题意可以写出相应的函数关系式,本题得以解决.【详解】由题意可得,当x>3时,y=5+(x-3)×1.2=1.2x+1.1,故答案为:y=1.2x+1.1.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,写出相应的函数解析式.18、x<﹣1.【解析】

以交点为分界,结合图象写出不等式-2x>ax+3的解集即可.【详解】解:∵函数y1=-2x和y2=ax+3的图象相交于点A(-1,2),∴不等式-2x>ax+3的解集为x<-1.故答案为x<-1.【点睛】此题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.三、解答题(共78分)19、(1)见详解;(2)见详解.【解析】

(1)利用三个内角等于90°的四边形是矩形,即可证明;(2)延长AF交BC于M,通过全等得到AB=BM,然后证明四边形EMCG是平行四边形,得到EG=CM,即可得证.【详解】解:(1)∵四边形ABCD是平行四边形,

∴AB∥CD,

∴∠ABC+∠BCD=180°,

∵BH,CH分别平分∠ABC与∠BCD,

∴∠HBC=∠ABC,∠HCB=∠BCD,

∴∠HBC+∠HCB=(∠ABC+∠BCD)=×180°=90°,

∴∠H=90°,

同理∠HEF=∠F=90°,

∴四边形EFGH是矩形,∴EG=HF;(2)如图,延长AF交BC于M,由(1)中可知AE⊥AF,即∠BEA=∠BEM=90°,在Rt△ABE和Rt△MBE中,,∴△ABE≌△MBE,∴AB=MB,AE=EM,由于四边形ABCD是平行四边形,∴∠ABC=∠ADC,AB=CD∵BH,DF分别平分∠ABC与∠ADC,∴∠ABE=∠CDG,在Rt△ABE和Rt△CDG中,,∴△ABE≌△CDG,∴CG=AE,∴CG=EM,由于四边形EFGH是矩形,∴EM∥CG,∴四边形EMCG是平行四边形,∴EG=MC,由于MC=BC-BM,∴EG=BC-AB.【点睛】本题考查了矩形的判定,平行四边形的判定和性质,角平分线的定义,熟练掌握判定方法是解题的关键.20、(1)A(﹣4,0);(2),;(3),8【解析】

(1)由三角形面积求出OA=4,即可求得A(-4,0).(2)利用待定系数法即可求出一次函数的解析式,进而求得C点的坐标,把C点的坐标代入,求出m的值,得到反比例函数的解析式;(3)先联立两函数解析式得出D点坐标,根据中心对称求得E点的坐标,然后根据三角形的面积公式计算△CED的面积即可.【详解】(1)如图1,∵,∴,∴,∵的面积为6,∴,∵,∴OA=4,∴A(﹣4,0);(2)如图1,把代入得,解得,∴一次函数的解析式为,把代入得,,∴,∵点C在反比例函数的图象上,∴m=2×3=6,∴反比例函数的解析式为;(3)如图2,作轴于F,轴于H,解,得,,∴,∴,∴=【点睛】此题考查一次函数与反比例函数的交点问题,待定系数法求函数解析式,函数图象上点的坐标特征,三角形面积的计算,注意数形结合的思想运用.21、见解析【解析】

根据平行四边形的性质得出AB=CD,AB∥CD,求出△BAE≌△DCF,求出BE=DF,根据平行四边形的判定得出即可.【详解】证明:∵BE⊥AC,DF⊥AC,∴BE∥DF,∠AEB=∠DFC=90°,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠BAE=∠DCF,在△BAE和△DCF中∴△BAE≌△DCF(AAS),∴BE=DF,∵BE∥DF,∴四边形BFDE是平行四边形.【点睛】本题考查了平行四边形的性质和判定、平行线的性质和全等三角形的性质和判定,能求出BE=DF和BE∥DF是解此题的关键.22、解:(1)90°;(2)2【解析】试题分析:(1)首先由等腰直角三角形的性质求得∠BAD、∠BCD的度数,然后由旋转的性质可求得∠BCE的度数,故此可求得∠DCE的度数;(2)由(1)可知△DCE是直角三角形,先由勾股定理求得AC的长,然后依据比例关系可得到CE和DC的长,最后依据勾股定理求解即可.试题解析:(1)∵△ABCD为等腰直角三角形,∴∠BAD=∠BCD=45°.由旋转的性质可知∠BAD=∠BCE=45°.∴∠DCE=∠BCE+∠BCA=45°+45°=90°.(2)∵BA=BC,∠ABC=90°,∴AC=.∵CD=3AD,∴AD=,DC=3.由旋转的性质可知:AD=EC=.∴DE=.考点:旋转的性质.23、(1);(2),详见解析;(3),详见解析.【解析】

(1)利用平行四边形的性质通过“角角边”证明△CFB≌△AGD,得到CF=AG,即可得证;(2)延长交于点,利用平行线的性质通过“角角边”证明△CFB≌△AGD,得到,再根据直角三角形中斜边上的中线等于斜边的一半即可证得;(3)延长,交于点,同(2)通过“角角边”证明△CFB≌△AGD,得到,进而证得.【详解】解:;∵四边形ABCD为平行四边形,∴AD=BC,AO=CO,∠DAG=∠BCF,∵,,∴∠BFC=∠DGA=90°,∴△CFB≌△AGD(AAS),∴CF=AG,∴;证明如图,延长交于点,,,,,,,,,,;如图,延长,交于点,四边形是平行四边形,,,,,,,,,,.【点睛】本题主要考查全等三角形的判定与性质,平行四边形的性质,直角三角形斜边上的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论