江苏省南京市建邺三校联合2024年数学八年级下册期末综合测试试题含解析_第1页
江苏省南京市建邺三校联合2024年数学八年级下册期末综合测试试题含解析_第2页
江苏省南京市建邺三校联合2024年数学八年级下册期末综合测试试题含解析_第3页
江苏省南京市建邺三校联合2024年数学八年级下册期末综合测试试题含解析_第4页
江苏省南京市建邺三校联合2024年数学八年级下册期末综合测试试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省南京市建邺三校联合2024年数学八年级下册期末综合测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.某铁工艺品商城某天销售了110件工艺品,其统计如表:货种ABCDE销售量(件)1040301020该店长如果想要了解哪个货种的销售量最大,那么他应该关注的统计量是()A.平均数 B.众数 C.中位数 D.方差2.如图4,在中,,点为斜边上一动点,过点作于点,于点,连结,则线段的最小值为A.1.2 B.2.4 C.2.5 D.4.83.在直角坐标系中,点P(-3,3)到原点的距离是()A. B.3 C.3 D.64.如图所示,等边三角形沿射线向右平移到的位置,连接、,则下列结论:(1)(2)与互相平分(3)四边形是菱形(4),其中正确的个数是()A.1 B.2 C.3 D.45.如图,四边形中,,,且,以,,为边向外作正方形,其面积分别为,,.若,,则的值为A.8 B.12 C.24 D.606.八年级(1)班要在甲、乙、丙、丁四名同学中挑选一名同学去参加数学竟赛,四名同学在5次数学测试中成绩的平均数及方差如下表所示甲乙丙丁平均数85939386方差333.53.7如果选出一名成绩较好且状态稳定的同学去参赛,那么应选()A.甲 B.乙 C.丙 D.丁7.若关于x,y的二元一次方程组的解为,一次函数y=kx+b与y=mx+n的图象的交点坐标为()A.(1,2) B.(2,1) C.(2,3) D.(1,3)8.某市居民用电的电价实行阶梯收费,收费标准如下表:一户居民每月用电量x(度)电费价格(元/度)0.480.530.78七月份是用电高峰期,李叔计划七月份电费支出不超过200元,则李叔家七月份最多可用电的度数是().A.100 B.400 C.396 D.3979.如图,在△ABC中,AB=8,BC=12,AC=10,点D、E分别是BC、CA的中点,则△DEC的周长为()A.15 B.18 C.20 D.2210.下列说法中,不正确的是()A.两组对边分别平行的四边形是平行四边形B.对角线互相平分且垂直的四边形是菱形C.一组对边平行另外一组对边相等的四边形是平行四边形D.有一组邻边相等的矩形是正方形11.若在实数范围内有意义,则x的取值范围在数轴上表示正确的是(

)A.

B. C.

D.12.在下列数据6,5,7,5,8,6,6中,众数是()A.5 B.6 C.7 D.8二、填空题(每题4分,共24分)13.在2017年的理化生实验考试中某校6名学生的实验成绩统计如图,这组数据的众数是___分.14.如图,在Rt△BAC和Rt△BDC中,∠BAC=∠BDC=90°,O是BC的中点,连接AO、DO.若AO=3,则DO的长为_____.15.正方形的边长为,则这个正方形的对角线长为_________.16.小菲受《乌鸦喝水》故事的启发,利用量筒和体积相同的小球进行了如下操作,请根据图中给出的信息,量筒中至少放入________小球时有水溢出.17.直角三角形的两边长为6cm,8cm,则它的第三边长是_____________。18.若点A、B在函数的图象上,则与的大小关系是________.三、解答题(共78分)19.(8分)如图,点E是正方形ABCD的边AB上任意一点,过点D作DF⊥DE交BC的延长线于点F.求证:DE=DF.20.(8分)在△ABC中,∠C=90°,AB=20,若∠A=60°,求BC,AC的长.21.(8分)以下是八(1)班学生身高的统计表和扇形统计图,请回答以下问题.八(1)班学生身高统计表组别身高(单位:米)人数第一组1.85以上1第二组第三组19第四组第五组1.55以下8(1)求出统计表和统计图缺的数据.(2)八(1)班学生身高这组数据的中位数落在第几组?(3)如果现在八(1)班学生的平均身高是1.63,已确定新学期班级转来两名新同学,新同学的身高分别是1.54和1.77,那么这组新数据的中位数落在第几组?22.(10分)如图,在四边形ABCD中,AB=4,BC=3,CD=12,AD=13,∠B=90°,连接AC.求四边形ABCD的面积.23.(10分)已知:如图,在Rt△ABC中,∠C=90°,AB=5cm,AC=3cm,动点P从点B出发沿射线BC以1cm/s的速度移动,设运动的时间为t秒.(1)求BC边的长;(2)当△ABP为直角三角形时,求t的值;(3)当△ABP为等腰三角形时,求t的值24.(10分)先化简再求值:,其中.25.(12分)如图,在四边形ABCD中,AD∥BC,AD=2BC,∠ABD=90°,E为AD的中点,连接BE.(1)求证:四边形BCDE是菱形;(2)连接AC,若AC平分∠BAD,BC=2,求BD的长.26.如图,在平面直角坐标系中,直线:

分别与x轴、y轴交于点B、C,且与直线:交于点A.分别求出点A、B、C的坐标;直接写出关于x的不等式的解集;若D是线段OA上的点,且的面积为12,求直线CD的函数表达式.

参考答案一、选择题(每题4分,共48分)1、B【解析】

根据众数的概念:数据中出现次数最多的数,即可得出他应该关注的统计量.【详解】由于众数是数据中出现次数最多的数,所以想要了解哪个货种的销售量最大,应该关注的统计量是这组数据中的众数.故选:B.【点睛】本题主要考查统计的相关知识,掌握平均数,众数,中位数,方差的意义是解题的关键.2、B【解析】

连接PC,证明四边形PECF是矩形,从而有EF=CP,当CP⊥AB时,PC最小,利用三角形面积解答即可.【详解】解:连接PC,

∵PE⊥AC,PF⊥BC,

∴∠PEC=∠PFC=∠C=90°,

∴四边形ECFP是矩形,

∴EF=PC,

∴当PC最小时,EF也最小,

即当CP⊥AB时,PC最小,

∵AC=1,BC=3,

∴AB=5,

∴PC的最小值为:∴线段EF长的最小值为2.1.

故选B.【点睛】本题考查的是矩形的判定与性质,关键是根据矩形的性质和三角形的面积公式解答.3、B【解析】

根据勾股定理可求点P(-3,3)到原点的距离.【详解】解:点P(-3,3)到原点的距离为=3,

故选:B.【点睛】本题考查勾股定理,熟练掌握勾股定理是解题的关键.4、D【解析】

先求出∠ACD=60°,继而可判断△ACD是等边三角形,从而可判断①是正确的;根据①的结论,可判断四边形ABCD是平行四边形,从而可判断②是正确的;再结合①的结论,可判断③正确;根据菱形的对角线互相垂直可得AC⊥BD,再根据平移后对应线段互相平行可得∠BDE=∠COD=90°,进而判断④正确.【详解】解:如图:∵△ABC,△DCE是等边三角形∴∠ACB=∠DCE=60°,AC=CD∴∠ACD=180°-∠ACB-∠DCE=60°∴△ACD是等边三角形∴AD=AC=BC,故①正确;由①可得AD=BC∵AB=CD∴四边形ABCD是平行四边形,∴BD、AC互相平分,故②正确;由①可得AD=AC=CE=DE故四边形ACED是菱形,即③正确∵四边形ABCD是平行四边形,BA=BC∴.四边形ABCD是菱形∴AC⊥BD,AC//DE∴∠BDE=∠COD=90°∴BD⊥DE,故④正确综上可得①②③④正确,共4个.故选:D【点睛】此题主要考查了菱形的判定与性质,以及平移的性质,关键是掌握菱形四边相等,对角线互相垂直.5、B【解析】

过作交于,则,依据四边形是平行四边形,即可得出,,再根据勾股定理,即可得到,进而得到的值.【详解】如图,过作交于,则,,四边形是平行四边形,,,,,,,,,,即,,故选.【点睛】本题考查了平行四边形的判定与性质,勾股定理,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.6、B【解析】

根据平均数和方差的意义解答.【详解】解:从平均数看,成绩最好的是乙、丙同学,

从方差看,乙方差小,发挥最稳定,

所以如果选出一名成绩较好且状态稳定的同学去参赛,那么应选乙,

故选:B.【点睛】本题考查平均数和方差,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.7、A【解析】

函数图象交点坐标为两函数解析式组成的方程组的解,据此即可求解.【详解】∵关于x,y的二元一次方程组的解为,∴一次函数y=kx+b与y=mx+n的图象的交点坐标为(1,2).故选A.【点睛】本题考查了一次函数与二元一次方程组,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.8、C【解析】

先判断出电费是否超过400度,然后根据不等关系:七月份电费支出不超过200元,列不等式计算即可.【详解】解:0.48×200+0.53×200

=96+106

=202(元),

故七月份电费支出不超过200元时电费不超过400度,

依题意有0.48×200+0.53(x-200)≤200,

解得x≤1.

答:李叔家七月份最多可用电的度数是1.

故选:C.【点睛】本题考查了列一元一次不等式解实际问题的运用,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的不等关系.9、A【解析】

根据三角形中位线定理求出DE,根据三角形的周长公式计算,得到答案.【详解】解:∵点D、E分别是BC、CA的中点,∴DE=12AB=4,CE=12AC=5,DC=12BC∴△DEC的周长=DE+EC+CD=15,故选:A.【点睛】考查的是三角形中位线定理,三角形的中位线平行于第三边,且等于第三边的一半.10、C【解析】

根据平行四边形、菱形和正方形的判定方法进行分析可得.【详解】A.两组对边分别平行的四边形是平行四边形,正确;B.对角线互相平分且垂直的四边形是菱形,正确;C.一组对边平行,另一组对边相等的四边形有可能是等腰梯形,故错误;D.有一组邻边相等的矩形是正方形,正确.故选C.11、D【解析】

根据二次根式有意义的条件:被开方数为非负数可得x+2≥0,再解不等式即可.【详解】∵二次根式在实数范围内有意义,∴被开方数x+2为非负数,∴x+2≥0,解得:x≥-2.故答案选D.【点睛】本题考查了二次根式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件.12、B【解析】

根据众数的概念进行解答即可.【详解】在数据6,5,7,5,8,6,6中,数据6出现了3次,出现次数最多,所以这组数据的众数是6,故选B.【点睛】本题考查了众数,明确众数是指一组数据中出现次数最多的数据是解题的关键.众数一定是这组数据中的数,可以不唯一.二、填空题(每题4分,共24分)13、1【解析】

根据图象写出这组数据,再根据一组数据中出现次数最多的数据叫做众数求解.【详解】解:由图可得,

这组数据分别是:24,24,1,1,1,30,

∵1出现的次数最多,

∴这组数据的众数是1.

故答案为:1.【点睛】本题考查折线统计图和众数,解答本题的关键是明确众数的定义,利用数形结合的思想解答.14、3【解析】

根据直角三角形斜边的中线等于斜边的一半求解即可.【详解】∵在Rt△BAC和Rt△BDC中,∠BAC=∠BDC=90°,O是BC的中点,∴,,∴DO=AO=3.故答案为3.【点睛】本题考查了直角三角形的性质,熟练掌握直角三角形斜边的中线等于斜边的一半是解答本题的关键.15、1【解析】

如图(见解析),先根据正方形的性质可得,再利用勾股定理即可得.【详解】如图,四边形ABCD是边长为正方形则由勾股定理得:即这个正方形的两条对角线相等,长为1故答案为:1.【点睛】本题考查了正方形的性质、勾股定理,掌握理解正方形的性质是解题关键.16、10【解析】(36-20)÷3=2(cm).设放入x小球有水溢出,由题意得2x+30>49,∴x>9.5,∴放入10小球有水溢出.17、10cm或cm.【解析】

分8cm的边为直角边与斜边两种情况,利用勾股定理进行求解即可.【详解】解:当8cm的边为直角边时,第三边长为=10cm;当8cm的边为斜边时,第三边长为cm.故答案为:10cm或cm.【点睛】本题主要考查勾股定理,解此题的关键在于分情况讨论.18、【解析】

将点A、B分别代入函数解析式中,求出m、n的值,再比较与的大小关系即可.【详解】点A、B分别代入函数解析式中解得∵∴故答案为:.【点睛】本题考查了一次函数的问题,掌握一次函数的性质和代入求值法是解题的关键.三、解答题(共78分)19、见解析【解析】试题分析:根据正方形的性质可得AD=DC,∠A=∠DCF=90°,再根据DE⊥DF得出∠1=∠2,从而说明三角形ADE和△CDF全等.试题解析:∵四边形ABCD是正方形,∴AD=CD,∠A=∠DCF=90°又∵DF⊥DE,∴∠1+∠3=∠2+∠3∴∠1=∠2∴△DAE≌△DCE∴DE=DF考点:(1)、正方形的性质;(2)、三角形全等判定20、【解析】

由已知可得,∠B=30°,根据30°角直角三角形的性质可得AC=10,再由勾股定理即可求得BC的长.【详解】解:∵∠C=90°,∠A=60°,∴∠B=180°-∠C-∠A=180°-90°-60°=30°.∴AC=AB=×20=10.在Rt△ABC中,由勾股定理得BC===10.【点睛】本题考查勾股定理.熟记定理是关键.21、(1)统计表中:第二组人数4人,第四组人数18人,扇形图中:第三组38%,第五组:16%;(2)第四组;(3)第四组.【解析】

(1)用第一组的人数和除以对应的百分比求出总人数,再用总人数分别乘以第二、四组的百分比求得其人数,根据百分比的概念求出第三、五组的百分比可得答案;

(2)根据中位数的概念求解可得;

(3)根据中位数的概念求解可得.【详解】解:(1)第一组人数为1,占被调查的人数百分比为2%,

∴被调查的人数为1÷2%=50(人),

则第二组人数为50×8%=4,第四组人数为50×36%=18(人),

第三组对应的百分比为×100%=38%,第五组的百分比为×100%=16%;

(2)被调查的人数为50人,中位数是第25和26个数据平均数,而第一二三组数据有24个,∴第25和26个数都落在第四组,所以八(1)班学生身高这组数据的中位数落在第四组;

(3)新学期班级转来两名新同学,此时共有52名同学,1.54在第五组,1.77在第二组.而新数据的第一二三组数据有25个数据,第26、27个数据都落在第四组,新数据的中位数是第26、27个数据的平均数,

所以新数据的中位数落在第四组.【点睛】本题考查了扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.22、36【解析】

由AB=4,BC=3,∠B=90°可得AC=1.可求得S△ABC;再由AC=1,AD=13,CD=12,可得△ACD为直角三角形,进而求得S△ACD,可求S四边形ABCD=S△ABC+S△ACD.【详解】∵∠ABC=90°,AB=4,BC=3,∴AC=∵CD=12,AD=13,∴∴∴∠ACD=90°∴,∴【点睛】此题考查勾股定理及逆定理的应用,判断△ACD是直角三角形是关键.23、【解析】试题分析:(1)直接根据勾股定理求出BC的长度;(2)当△ABP为直角三角形时,分两种情况:①当∠APB为直角时,②当∠BAP为直角时,分别求出此时的t值即可;(3)当△ABP为等腰三角形时,分三种情况:①当AB=BP时;②当AB=AP时;③当BP=AP时,分别求出BP的长度,继而可求得t值.试题解析:(1)在Rt△ABC中,BC2=AB2-AC2=52-32=16,∴BC=4(cm);(2)由题意知BP=tcm,①当∠APB为直角时,点P与点C重合,BP=BC=4cm,即t=4;②当∠BAP为直角时,BP=tcm,CP=(t-4)cm,AC=3cm,在Rt△ACP中,AP2=32+(t-4)2,在Rt△BAP中,AB2+AP2=BP2,即:52+[32+(t-4)2]=t2,解得:t=,故当△ABP为直角三角形时,t=4或t=;(3)①当AB=BP时,t=5;②当AB=AP时,BP=2BC=8cm,t=8;③当BP=AP时,AP=BP=tcm,CP=|t-4|cm,AC=3cm,在Rt△ACP中,AP2=AC2+CP2,所以t2=32+(t-4)2,解得:t=,综上所述:当△ABP为等腰三角形时,t=5或t=8或t=.考点:勾股定理24、1-【解析】试题分析:首

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论