版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市延安初级中学2024年八年级下册数学期末达标检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.把分式中的x、y的值同时扩大为原来的2倍,则分式的值()A.不变 B.扩大为原来的2倍C.扩大为原来的4倍 D.缩小为原来的一半2.要测量河岸相对两点A、B的距离,已知AB垂直于河岸BF,先在BF上取两点C、D,使CD=CB,再过点D作BF的垂线段DE,使点A、C、E在一条直线上,如图,测出BD=10,ED=5,则AB的长是()A.2.5 B.10 C.5 D.以上都不对3.如图,在正方形中,为边上一点,将沿折叠至处,与交于点,若,则的大小为()A. B. C. D.4.已知平行四边形ABCD的周长为32,AB=4,则BC的长为()A.4 B.12 C.24 D.485.若一次函数y=kx+b的图象与直线y=﹣x+1平行,且过点(8,2),则此一次函数的解析式为()A.y=﹣x﹣2 B.y=﹣x﹣6 C.y=﹣x﹣1 D.y=﹣x+106.如图,在△ABC中,∠B=90°,以A为圆心,AE长为半径画弧,分别交AB、AC于F、E两点;分别以点E和点F为圆心,大于EF且相等的长为半径画弧,两弧相交于点G,作射线AG,交BC于点D,若BD=,AC长是分式方程的解,则△ACD的面积是()A. B. C.4 D.37.下列函数:①;②;③;④;⑤.其中,是一次函数的有()A.1个 B.2个 C.3个 D.4个8.一辆慢车和一辆快车沿相同的路线从A地到B地,所行驶的路程与时间的函数图形如图所示,下列说法正确的有()①快车追上慢车需6小时;②慢车比快车早出发2小时;③快车速度为46km/h;④慢车速度为46km/h;⑤A、B两地相距828km;⑥快车从A地出发到B地用了14小时A.2个 B.3个 C.4个 D.5个9.如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E,F,G,H分别为边AB,BC,CD,AD的中点.若AC=10,BD=6,则四边形EFGH的面积为()A.15 B.20 C.30 D.6010.下列命题正确的是().A.任何事件发生的概率为1B.随机事件发生的概率可以是任意实数C.可能性很小的事件在一次实验中有可能发生D.不可能事件在一次实验中也可能发生11.如果(2+3)2=a+b3,a,b为有理数,那么a+b=()A.7+43 B.11 C.7 D.312.函数的自变量满足≤≤2时,函数值y满足≤≤1,则这个函数肯定不是()A. B. C. D.二、填空题(每题4分,共24分)13.有一张一个角为30°,最小边长为4的直角三角形纸片,沿图中所示的中位线剪开后,将两部分拼成一个四边形,所得四边形的周长是.14.如图,在中,,,分别是,的中点,在的延长线上,,,,则四边形的周长是____________.15.如果一次函数y=kx+3(k是常数,k≠0)的图象经过点(1,0),那么y的值随x的增大而_____.(填“增大”或“减小”)16.若八个数据x1,x2,x3,……x8,的平均数为8,方差为1,增加一个数据8后所得的九个数据x1,x2,x3,…x8;8的平均数________8,方差为S2________1.(填“>”、“=”、“<”)17.甲、乙两人进行射击测试,每人10次射击成绩的平均数都是8.5环,方差分别是:=2,=1.5,则射击成绩较稳定的是_______(填“甲”或“乙”).18.在菱形中,,若菱形的面积是,则=____________三、解答题(共78分)19.(8分)某中学举办“校园好声音”朗诵大赛,根据初赛成绩,七年级和八年级各选出5名选手组成七年级代表队和八年级代表队参加学校决赛两个队各选出的5名选手的决赛成绩如图所示:(1)根据所给信息填写表格;平均数(分)中位数(分)众数(分)七年级
85
八年级85
100(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)若七年级代表队决赛成绩的方差为70,计算八年级代表队决赛成绩的方差,并判断哪个代表队的选手成绩较为稳定.20.(8分)某车间加工1200个零件后,采用新工艺,工效提升了20%,这样加工同样多的零件就少用10h,采用新工艺前、后每小时分别加工多少个零件?21.(8分)定向越野作为一种新兴的运动项目,深受人们的喜爱.这种定向运动是利用地图和指北针到访地图上所指示的各个点标,以最短时间按序到达所有点标者为胜.下面是我区某校进行定向越野活动中,中年男子组的成绩(单位:分:秒).9:0114:459:4619:2211:2018:4711:4012:3211:5213:4522:2715:0017:3013:2218:3410:4519:2416:2621:3315:3119:5014:2715:5516:0720:4312:1321:4114:5711:3912:4512:5715:3113:2014:5014:579:4112:1314:2712:2512:38例如,用时最少的赵老师的成绩为9:01,表示赵老师的成绩为9分1秒.以下是根据某校进行定向越野活动中,中年男子组的成绩中的数据,绘制的统计图表的一部分.某校中年男子定向越野成绩分段统计表分组/分频数频率9≤x<1140.111≤x<13b0.27513≤x<1590.22515≤x<176d17≤x<1930.07519≤x<2140.121≤x<2330.075合计ac(1)这组数据的极差是____________;(2)上表中的a=____________,b=____________,c=____________,d=____________;(3)补全频数分布直方图.22.(10分)如图,是由边长为1的小正方形组成的正方形网格,设顶点在这些小正方形顶点的三角形为格点三角形,图中已给出△ABC的一边AB的位置.(1)请在所给的网格中画出边长分别为2,25,4的一个格点△ABC(2)根据所给数据说明△ABC是直角三角形.23.(10分)如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.求证:四边形DEBF是平行四边形.24.(10分)如图,在中,对角线AC,BD交于点O,E是AD上任意一点,连接EO并延长,交BC于点F,连接AF,CE.(1)求证:四边形AFCE是平行四边形;(2)若,°,.①直接写出的边BC上的高h的值;②当点E从点D向点A运动的过程中,下面关于四边形AFCE的形状的变化的说法中,正确的是A.平行四边形→矩形→平行四边形→菱形→平行四边形B.平行四边形→矩形→平行四边形→正方形→平行四边形C.平行四边形→菱形→平行四边形→菱形→平行四边形D.平行四边形→菱形→平行四边形→矩形→平行四边形25.(12分)如图1,菱形纸片,对其进行如下操作:把翻折,使得点与点重,折痕为;把翻折,使得点与点重合,折痕为(如图2),连结.设两条折痕的延长线交于点.(1)请在图2中将图形补充完整,并求的度数;(2)四边形是菱形吗?说明理由.26.已知满足.(1)求的值;(2)求的值.
参考答案一、选择题(每题4分,共48分)1、D【解析】
根据分式的基本性质即可求出答案.【详解】解:原式=,∴分式的值缩小为原来的一半;故选择:D.【点睛】本题考查分式的基本性质,解题的关键是熟练运用分式的运算法则,本题属于基础题型.2、C【解析】∵AB⊥BD,ED⊥AB,∴∠ABC=∠EDC=90∘,在△ABC和△EDC中,,∴△ABC≌△EDC(ASA),∴AB=ED=5.故选C.3、B【解析】
首先利用正方形性质得出∠B=∠BCD=∠BAD=90°,从而得知∠ACB=∠BAC=45°,然后进一步根据三角形外角性质可以求出∠BEF度数,再结合折叠性质即可得出∠BAE度数,最后进一步求解即可.【详解】∵四边形ABCD为正方形,∴∠B=∠BCD=∠BAD=90°,∴∠ACB=∠BAC=45°,∵∠EFC=69°,∴∠BEF=∠EFC+∠ACB=114°,由折叠性质可得:∠BEA=∠BEF=57°,∴∠BAE=90°−57°=33°,∴∠EAC=45°−33°=12°,故选:B.【点睛】本题主要考查了正方形性质与三角形外角性质的综合运用,熟练掌握相关概念是解题关键.4、B【解析】由题意得:.故选B.5、D【解析】
根据平行直线的解析式的k值相等求出k,然后把点P(﹣1,2)的坐标代入一次函数解析式计算即可得解.【详解】解:∵一次函数y=kx+b的图象与直线y=﹣x+1平行,∴k=﹣1,∵一次函数过点(8,2),∴2=﹣8+b解得b=1,∴一次函数解析式为y=﹣x+1.故选:D.【点睛】此题考查的是一次函数的图象及性质和求一次函数的解析式,掌握平行直线的解析式的k值相等和利用待定系数法求一次函数解析式是解决此题的关键.6、A【解析】
利用角平分线的性质定理证明DB=DH=,再根据三角形的面积公式计算即可【详解】如图,作DH⊥AC于H,∵∴5(x-2)=3x∴x=5经检验:x=5是分式方程的解∵AC长是分式方程的解∴AC=5∵∠B=90°∴DB⊥AB,DH⊥AC∵AD平分∠BAC,∴DH=DB=S=故选A【点睛】此题考查角平分线的性质定理和三角形面积,解题关键在于做辅助线7、C【解析】
根据一次函数的定义逐一判断即可.【详解】①是一次函数;②是一次函数;③是一次函数;④不是一次函数;⑤不是一次函数.故选C.【点睛】此题考查的是一次函数的判断,掌握一次函数的定义是解决此题的关键.8、B【解析】
根据图形给出的信息求出两车的出发时间,速度等即可解答.【详解】解:①两车在276km处相遇,此时快车行驶了4个小时,故错误.②慢车0时出发,快车2时出发,故正确.③快车4个小时走了276km,可求出速度为69km/h,错误.④慢车6个小时走了276km,可求出速度为46km/h,正确.⑤慢车走了18个小时,速度为46km/h,可得A,B距离为828km,正确.⑥快车2时出发,14时到达,用了12小时,错误.故答案选B.【点睛】本题考查了看图手机信息的能力,注意快车并非0时刻出发是解题关键.9、A【解析】
根据三角形中位线定理、矩形的判定定理得到平行四边形EFGH为矩形,根据矩形的面积公式计算即可.【详解】解:∵点E,F分别为边AB,BC的中点.∴EF=AC=5,EF∥AC,同理,HG=AC=5,HG∥AC,EH=BD=3,EH∥BD,∴EF=HG,EF∥HG,∴四边形EFGH为平行四边形,∵EF∥AC,AC⊥BD,∴EF⊥BD,∵EH∥BD,∴∠HEF=90°,∴平行四边形EFGH为矩形,∴四边形EFGH的面积=3×5=1.故选:A.【点睛】本题考查中点四边形的概念和性质、掌握三角形中位线定理、矩形的判定定理是解题的关键.10、C【解析】
根据随机事件、不可能事件的定义和概率的性质判断各选项即可.【详解】A中,只有必然事件概率才是1,错误;B中,随机事件的概率p取值范围为:0<p<1,错误;C中,可能性很小的事件,是有可能发生的,正确;D中,不可能事件一定不发生,错误故选:C【点睛】本题考查事件的可能性,注意,任何事件的概率P一定在0至1之间.11、B【解析】
直接利用完全平方公式将原式展开,进而得出a,b的值,即可得出答案.【详解】解:∵(2+3)2=a+b3(a,b为有理数),
∴7+43=a+b3,
∴a=7,b=4,
∴a+b=1.
故选B.【点睛】此题主要考查了二次根式的化简求值,正确得出a,b的值是解题关键.12、A【解析】
把x=代入四个选项中的解析式可得y的值,再把x=2代入解析式可得y的值,然后可得答案.【详解】:A、把x=代入可得y=4,把x=2代入可得y=1,故A正确;B、把x=代入可得y=,把x=2代入可得y=1,故B错误;C、把x=代入可得y=,把x=2代入可得y=1,故C错误;D、把x=代入可得y=16,把x=2代入可得y=1,故D错误.故选A.【点睛】此题主要考查了反比例函数图象的性质,关键是正确理解题意,根据自变量的值求出对应的函数值.二、填空题(每题4分,共24分)13、或1.【解析】
试题分析:此题主要考查了图形的剪拼,关键是根据画出图形,要考虑全面,不要漏解.根据三角函数可以计算出BC=8,AC=4,再根据中位线的性质可得CD=AD=,CF=BF=4,DF=2,然后拼图,出现两种情况,一种是拼成一个矩形,另一种拼成一个平行四边形,进而算出周长即可.解:由题意可得:AB=4,∵∠C=30°,∴BC=8,AC=4,∵图中所示的中位线剪开,∴CD=AD=2,CF=BF=4,DF=2,如图1所示:拼成一个矩形,矩形周长为:2+2+4+2+2=8+4;如图2所示,可以拼成一个平行四边形,周长为:4+4+4+4=1,故答案为8+4或1.考点:1.图形的剪拼;2.三角形中位线定理.14、1【解析】
根据勾股定理先求出BC的长,再根据三角形中位线定理和直角三角形的性质求出DE和AE的长,进而由已知可判定四边形AEDF是平行四边形,从而求得其周长.【详解】解:在Rt△ABC中,∵AC=6,AB=8,∴BC=10,∵E是BC的中点,∴AE=BE=5,∴∠BAE=∠B,∵∠FDA=∠B,∴∠FDA=∠BAE,∴DF∥AE,∵D、E分别是AB、BC的中点,∴DE∥AC,DE=AC=3,∴四边形AEDF是平行四边形∴四边形AEDF的周长=2×(3+5)=1.故答案为:1.【点睛】本题考查三角形中位线定理的运用,熟悉直角三角形的性质、等腰三角形的判定以及平行四边形的判定.熟练运用三角形的中位线定理和直角三角形的勾股定理是解题的关键.15、减小【解析】【分析】根据点的坐标利用一次函数图象上点的坐标特征可求出k值,再利用一次函数的性质即可得出结论.【详解】∵一次函数y=kx+3(k是常数,k≠0)的图象经过点(1,0),∴0=k+3,∴k=﹣3,∴y的值随x的增大而减小,故答案为减小.【点睛】本题考查了一次函数的图象与性质,熟练掌握待定系数法以及一次函数的增减性与一次函数的比例系数k之间的关系是解题的关键.16、=<【解析】
根据八个数据x1,x2,x3,……x8,的平均数为8,方差为1,利用平均数和方差的计算方法,可求出,,再分别求出9个数的平均数和方差,然后比较大小就可得出结果【详解】解:∵八个数据x1,x2,x3,……x8,的平均数为8,∴∴,∵增加一个数8后,九个数据x1,x2,x3,8…x8的平均数为:;∵八个数据x1,x2,x3,……x8,的方差为1,∴∴∵增加一个数8后,九个数据x1,x2,x3,8…x8的方差为:;故答案为:=,<【点睛】本题考查方差,算术平均数等知识,解题的关键是熟练掌握算术平均数与方差的求法,属于中考常考题型.17、答案为:乙;【解析】【分析】在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定.【详解】在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定;乙的方差比较小,所以乙的成绩比较稳定.故答案为乙【点睛】本题考核知识点:方差.解题关键点:理解方差的意义.18、【解析】
由菱形的性质得AO=CO=6cm,BO=DO,AC⊥BD,由菱形的面积可求BD的长,由勾股定理可求AB的长.【详解】解:如图,∵四边形ABCD是菱形∴AO=CO=6cm,BO=DO,AC⊥BD∵S菱形ABCD=×AC×BD=96∴BD=16cm∴BO=DO=8cm∴AB==10cm故答案为10cm【点睛】本题考查了菱形的性质,掌握菱形的面积公式是解决本题的关键.三、解答题(共78分)19、(1)填表见解析;(2)七年级代表队成绩好些;(3)七年级代表队选手成绩较为稳定.【解析】
(1)根据平均数、众数和中位数的定义分别进行解答即可;(2)根据表格中的数据,可以结合两个年级成绩的平均数和中位数,说明哪个队的决赛成绩较好;(3)根据方差公式先求出八年级的方差,再根据方差的意义即可得出答案.【详解】(1)八年级的平均成绩是:(75+80+85+85+100)÷5=85(分);85出现了2次,出现的次数最多,则众数是85分;把八年级的成绩从小到大排列,则中位数是80分;填表如下:平均数(分)中位数(分)众数(分)初二858585初三8580100(2)七年级代表队成绩好些.∵两个队的平均数都相同,七年级代表队中位数高,∴七年级代表队成绩好些.(3)S八年级2=[(70-85)2+(100-85)2+(100-85)2+(75-85)2+(80-85)2]=160;∵S七年级2<S八年级2,∴七年级代表队选手成绩较为稳定.【点睛】本题考查了方差:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1-)2+(x2-)2+…+(xn-)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.也考查了中位数和众数.20、采用新工艺前每时加工20个零件,采用新工艺后每时加工1个零件.【解析】
设采用新工艺前每时加工x个零件,那么采用新工艺后每时加工1.2x个零件,根据时间=零件数÷每小时加工零件数,由等量关系:加工同样多的零件1200个少用10h,可列方程求解.【详解】设采用新工艺前每时加工x个零件,则采用新工艺后每时加工1.2x个零件,依题意有,解得x=20,经检验:x=20是原分式方程的解,且符合题意,则1.2x=1.答:采用新工艺前每时加工20个零件,采用新工艺后每时加工1个零件.【点睛】本题考查分式方程的应用和理解题意能力,关键是设出采用新工艺之前每小时加工x个,然后表示出采用新工艺后每小时加工多少个,再以时间做为等量关系列方程求解.21、见解析【解析】
(1)先找出这组成绩的最大值与最小值,计算即可得;(2)根据分组“9≤x<11”的频数与频率可求得a的值,然后用a乘0.275可求得b的值,用6除以a可得d,把所有频率相加可求得c,据此填空即可;(3)根据b的值补全图形即可.【详解】(1)这组数据的最大值为22:27,最小值为9:01,所以极差为:22:27-9:01=13:26,故答案为:13:26或13分26秒;(2)a=4÷0.1=40,b=40×0.275=11,d=6÷40=0.15,c=0.1+0.275+0.225+0.15+0.075+0.1+0.075=1,故答案为:40,11,1,0.15.(3)如图所示.【点睛】本题考查了极差、频数分布表、频数分布直方图,熟练掌握频数、频率与总数间的关系是解题的关键.22、(1)画图见解析;(2)证明见解析【解析】试题分析(1)利用勾股定理即可作出边长为2,25,4的一个格点△ABC;(2)根据勾股定理得逆定理即可证明试题解析:(1)如图所示:(2)由图可知,AB=4,BC=2,AC=25∵AB2+BC2=20,AC2=20,∴AB2+BC2=AC2,∴△ABC是直角三角形.23、证明见解析【解析】
证明:连接BD,交AC于点O,根据四边形ABCD是平行四边形,得到OA=OC,OB=OD,由此推出OE=OF,利用对角线互相平分的四边形是平行四边形即可得到结论.【详解】连接BD,交AC于点O,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AE=CF,∴OA﹣AE=OC﹣CF,即OE=OF,∵OE=OF,OB=OD∴四边形DEBF是平行四边形.【点睛】此题考查平行四边形的性质及判定,熟记判定定理及性质定理是解题的关键.24、(1)见解析;(2)①;②D【解析】
(1)由四边形ABCD是平行四边形可得AD∥BC,AO=CO,根据“AAS”证明△AOE≌△COF,可得OE=OF,从而可证四边形AFCE是平行四边形;(2)①作AH⊥BC于点H,根据锐角三角函数的知识即可求出AH的值;②根据图形结合平行四边形、矩形、菱形的判定逐个阶段进行判断即可.【详解】(1)证明:在中,对角线AC,BD相交于点O.∴,.∴,.∴.∴.∵,,∴四边形AFCE是平行四边形.(2)①作AH⊥BC于点H,∵AD∥BC,∠DAC=60°,∴∠ACF=∠DAC=60°,∴AH=AC·sin∠ACF=,∴BC上的高h=;②在整个运动过程中,OA=OC,OE=OF,
∴四边形AFCE恒为平行四边形,
E点开始运动时,随着它的运动,∠FAC逐渐减小,当∠FAC=∠EAC=60°时,即AC为∠FAE的角平分线,∵四边形AFCE恒为平行四边形,∴四边形AFCE为菱形,当∠FAC+∠EAC=90°时,即∠FAC=30°,此时AF⊥FC,∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 石河子大学《药剂学》2022-2023学年第一学期期末试卷
- 石河子大学《实验诊断学》2021-2022学年第一学期期末试卷
- 石河子大学《计算机辅助绘图》2022-2023学年第一学期期末试卷
- 沈阳理工大学《专业创新课程-仪器仪表生产与创新》2022-2023学年第一学期期末试卷
- 沈阳理工大学《信号与系统》2022-2023学年第一学期期末试卷
- 沈阳理工大学《人机工程学》2022-2023学年第一学期期末试卷
- 沈阳理工大学《建筑构造》2022-2023学年第一学期期末试卷
- 沈阳理工大学《光学设计》2022-2023学年第一学期期末试卷
- 沈阳理工大学《材料磨损与抗磨材料》2023-2024学年第一学期期末试卷
- 合同操作性条款
- 学校校园欺凌师生访谈记录表六篇
- 2023年度军队文职《教育学》真题库(含答案)
- 耳鼻喉科手术分级目录2022
- 课后习题答案-电机与拖动-刘锦波
- 急混合细胞白血病
- GB/T 11836-2023混凝土和钢筋混凝土排水管
- 烟花爆竹生产企业2023安全生产费用投入计划和实施方案
- 第三章 继承优良传统 弘扬中国精神
- 中国阴道炎诊治课件
- 微生物生物转化
- 冠心病的护理心得体会(11篇)
评论
0/150
提交评论