初中八年级数学教案_第1页
初中八年级数学教案_第2页
初中八年级数学教案_第3页
初中八年级数学教案_第4页
初中八年级数学教案_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第第页初中八年级数学教案最新中学八班级数学教案文案1

《梯形》教案

教学目标:

情意目标:培育同学团结协作的精神,体验探究胜利的乐趣。

技能目标:能利用等腰梯形的性质解简约的几何计算、证明题;培育同学探究问题、自主学习的技能。

认知目标:了解梯形的概念及其分类;掌控等腰梯形的性质。

教学重点、难点

重点:等腰梯形性质的探究;

难点:梯形中帮助线的添加。

教学课件:PowerPoint演示文稿

教学方法:启发法、

学习方法:争论法、合作法、练习法

教学过程:

(一)导入

1、出示图片,说出每辆汽车车窗外形(投影)

2、板书课题:5梯形

3、练习:以下图形中哪些图形是梯形?(投影)

4、总结梯形概念:一组对边平行另以组对边不平行的四边形是梯形。

5、指出图形中各部位的名称:上底、下底、腰、高、对角线。(投影)

6、非常梯形的.分类:(投影)

(二)等腰梯形性质的探究

【探究性质一】

思索:在等腰梯形中,假如将一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎样的三角形?(投影)

猜想:由此你能得到等腰梯形的内角有什么样的性质?(同学操作、争论、作答)

如图,等腰梯形ABCD中,AD∥BC,AB=CD。求证:∠B=∠C

想一想:等腰梯形ABCD中,∠A与∠D是否相等?为什么?

等腰梯形性质:等腰梯形的同一条底边上的两个内角相等。

【操练】

(1)如图,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,那么腰AB=cm。(投影)

(2)如图,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延长线于点E,CA平分∠BCD,求证:∠B=2∠E.(投影)

【探究性质二】

假如连接等腰梯形的两条对角线,图中有哪几对全等三角形?哪些线段相等?(同学操作、争论、作答)

如上图,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求证:AC=BD。(投影)

等腰梯形性质:等腰梯形的两条对角线相等。

【探究性质三】

问题一:延长等腰梯形的两腰,哪些三角形是轴对称图形?为什么?对称轴呢?(同学操作、作答)

问题二:等腰梯是否轴对称图形?为什么?对称轴是什么?(重点争论)

等腰梯形性质:同以底上的两个内角相等,对角线相等

(三)质疑反思、小结

让同学回顾本课教学内容,并提出尚存问题;

同学小结,老师视详细状况予以提示:性质(从边、角、对角线、对称性等角度总结)、解题方法(化梯形问题为三角形及平行四边形问题)、梯形中帮助线的添加方法。

最新中学八班级数学教案文案2

一、素养教育目标

(一)知识教学点

使同学了解一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系。

(二)技能训练点

逐步培育同学观测、比较、分析、综合、抽象、概括的规律思维技能。

(三)德育渗透点

培育同学独立思索、勇于创新的精神。

二、教学重点、难点

1.重点:使同学了解一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系并会应用。

2.难点:一个锐角的正弦(余弦)与它的余角的余弦(正弦)之间的关系的应用。

三、教学步骤

(一)明确目标

1.复习提问

(1)什么是∠A的正弦、什么是∠A的余弦,结合图形请同学回答.由于正弦、余弦的概念是讨论本课内容的知识基础,请中下同学回答,从中可以了解教学班还有多少人不清晰的,可以采用适当的补救措施.

(2)请同学们回忆30°、45°、60°角的正、余弦值(老师板书).

(3)请同学们观测,从中发觉什么特征?同学肯定会回答“sin30°=cos60°,sin45°=cos45°,sin60°=cos30°,这三个角的正弦值等于它们余角的余弦值”。

2.导入新课

依据这一特征,同学们可能会猜想“一个锐角的正弦(余弦)值等于它的余角的余弦(正弦)值.”这是否是真命题呢?引出课题。

(二)整体感知

关于锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系,是通过30°、45°、60°角的正弦、余弦值之间的关系引入的,然后加以证明。引入这两个关系式是为了便于查“正弦和余弦表”,关系式虽然用黑体字并加以文字语言的证明,但不标明是定理,其证明也不要求同学理解,更不应要求同学利用这两个关系式去推证其他三角恒等式.在本章,这两个关系式的用处仅仅限于查表和计算,而不是证明。

(三)重点、难点的学习和目标完成过程

1.通过复习非常角的三角函数值,引导同学观测,并猜想“任一锐角的正弦(余弦)值等于它的余角的余弦(正弦)值吗?”提出问题,激发同学的学习热忱,使同学的思维积极活跃。

2.这时少数反应快的同学可能头脑中已经“画”出了图形,并有了思路,但对部分同学来说仍思路凌乱.因此老师应进一步引导:sinA=cos(90°-A),cosA=sin(90°-A)(A是锐角)成立吗?这时,同学结合正、余弦的概念,完全可以自己解决,老师要给同学足够的讨论解决问题的时间,以培育同学规律思维技能及独立思索、勇于创新的精神。

3.老师板书:

任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。

sinA=cos(90°-A),cosA=sin(90°-A)。

4.在学习了正、余弦概念的基础上,同学了解以上内容并不困难,但是,由于同学初次接触三角函数,还不娴熟,而定理又涉及余角、余函数,使同学极易混淆.因此,定理的应用对同学来说是难点、在给出定理后,需加以巩固。

已知∠A和∠B都是锐角,

(1)把cos(90°-A)写成∠A的正弦。

(2)把sin(90°-A)写成∠A的余弦。

这一练习只能起到巩固定理的作用.为了运用定理,教材安排了例3。

同学独立完成练习2,就说明定理的教学较胜利,同学基本会运用。

教材中3的设置,事实上是对前二节课内容的综合运用,既考察同学正、余弦概念的掌控程度,同时又对本课知识加以巩固练习,因此例3的安排恰到好处.同时,做例3也为下一节查正余弦表做了预备。

(四)小结与扩展

1.请同学做知识小结,使同学对所学内容进行归纳总结,将所学内容变成自己知识的组成部分。

2.本节课我们由非常角的正弦(余弦)和它的余角的余弦(正弦)值间关系,以及正弦、余弦的概念得出的结论:任意一个锐角的正弦值等于它的余角的余弦值,任意一个锐角的余弦值等于它的余角的正弦值。

最新中学八班级数学教案文案3

一、教学目标

1.理解分式的基本性质.

2.会用分式的基本性质将分式变形.

二、重点、难点

1.重点:理解分式的基本性质.

2.难点:敏捷应用分式的基本性质将分式变形.

3.认知难点与突破方法

教学难点是敏捷应用分式的基本性质将分式变形.突破的方法是通过复习分数的通分、约分总结出分数的基本性质,再用类比的方法得出分式的基本性质.应用分式的基本性质导出通分、约分的概念,使同学在理解的基础上敏捷地将分式变形.

三、例、习题的意图分析

1.P7的例2是使同学观测等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变.

2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得留意的是:约分是要找准分子和分母的公因式,最末的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及全部因式的次幂的积,作为最简公分母.

老师要讲清方法,还要实时地订正同学做题时涌现的错误,使同学在做提示加深对相应概念及方法的理解.

3.P11习题16.1的第5题是:不转变分式的值,使以下分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,转变其中任何两个,分式的值不变.

“不转变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5.

四、课堂引入

1.请同学们考虑:与相等吗?与相等吗?为什么?

2.说出与之间变形的过程,与之间变形的过程,并说出变形依据?

3.提问分数的基本性质,让同学类比猜想出分式的基本性质.

五、例题讲解

P7例2.填空:

[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.

P11例3.约分:

[分析]约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.

P11例4.通分:

[分析]通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及全部因式的次幂的积,作为最简公分母.

最新中学八班级数学教案文案4

教学目标:

1、经受用数格子的方法探究勾股定理的过程,进一步进展同学的合情推力意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。

2、探究并理解直角三角形的三边之间的数量关系,进一步进展同学的说理和简约的推理的意识及技能。

重点难点:

重点:了解勾股定理的由来,并能用它来解决一些简约的问题。

难点:勾股定理的发觉

教学过程

一、创设问题的情境,激发同学的学习热忱,导入课题

出示投影1(章前的图文p1)老师道白:介绍我国古代在勾股定理讨论方面的贡献,并结合课本p5谈一谈,讲解并描述我国是最早了解勾股定理的国家之一,介绍商高(三千多年前周期的数学家)在勾股定理方面的贡献。

出示投影2(书中的P2图1—2)并回答:

1、观测图1-2,正方形A中有_______个小方格,即A的面积为______个单位。

正方形B中有_______个小方格,即A的面积为______个单位。

正方形C中有_______个小方格,即A的面积为______个单位。

2、你是怎样得出上面的结果的?在同学沟通回答的基础上老师径直发问:

3、图1—2中,A,B,C之间的面积之间有什么关系?

同学沟通后形成共识,老师板书,A+B=C,接着提出图1—1中的A.B,C的关系呢?

二、做一做

出示投影3(书中P3图1—4)提问:

1、图1—3中,A,B,C之间有什么关系?

2、图1—4中,A,B,C之间有什么关系?

3、从图1—1,1—2,1—3,1|—4中你发觉什么?

同学争论、沟通形成共识后,老师总结:

以三角形两直角边为边的正方形的面积和,等于以斜边的正方形面积。

三、议一议

1、图1—1、1—2、1—3、1—4中,你能用三角形的边长表示正方形的面积吗?

2、你能发觉直角三角形三边长度之间的关系吗?

在同学的沟通基础上,老师板书:

直角三角形边的两直角边的平方和等于斜边的平方。这就是的“勾股定理”

也就是说:假如直角三角形的两直角边为a,b,斜边为c

那么

我国古代称直角三角形的较短的直角边为勾,较长的为股,斜边为弦,这就是勾股定理的由来。

3、分别以5厘米和12厘米为直角边做出一个直角三角形,并测量斜边的长度(同学测量后回答斜边长为13)请大家想一想(2)中的规律,对这个三角形仍旧成立吗?(回答是确定的:成立)

四、想一想

这里的29英寸(74厘米)的电视机,指的是屏幕的长吗?只的是屏幕的款吗?那他指什么呢?

五、巩固练习

1、错例辨析:

△ABC的两边为3和4,求第三边

解:由于三角形的两边为3、4

所以它的第三边的c应满意=25

即:c=5

辨析:(1)要用勾股定理解题,首先应具备直角三角形这个必不可少的条件,可此题

△ABC并未说明它是否是直角三角形,所以用勾股定理就没有依据。

(2)假设告知△ABC是直角三角形,第三边C也不肯定是满意,题目中并为交待C是斜边

综上所述这个题目条件不足,第三边无法求得。

2、练习P7§1.11

六、作业

课本P7§1.12、3、4

最新中学八班级数学教案文案5

教学目标:

1.经受运用拼图的方法说明勾股定理是正确的过程,在数学活动中进展同学的探究意识和合作沟通的习惯。

2.掌控勾股定理和他的简约应用

重点难点:

重点:能娴熟运用拼图的方法证明勾股定理

难点:用面积证勾股定理

教学过程

七、创设问题的情境,激发同学的学习热忱,导入课题

我们已经通过数格子的方法发觉了直角三角形三边的关系,到底是几个实例,是否具有普遍的意义,还需加以论证,下面就是今日所要讨论的内容,下边请大家画四个全等的直角三角形,并把它剪下来,用这四个直角三角形,拼一拼、摆一摆,看看能否得到一个含有以斜边c为边长的正方形,并与同学沟通。在同学操作的过程中,老师展示投影1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论