版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年江苏省徐州市职业中学高二数学文期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知e为自然对数的底数,设函数f(x)=,则下列说法正确的是()A.当k=1时,f(x)在x=1处取得极小值B.当k=1时,f(x)在x=1处取得极大值C.当k=2时,f(x)在x=1处取得极小值D.当k=2时,f(x)在x=1处取得极大值参考答案:C当k=1时,函数f(x)=(ex﹣1)(x﹣1).求导函数可得f'(x)=ex(x﹣1)+(ex﹣1)=(xex﹣1),f'(1)=e﹣1≠0,f'(2)=2e2﹣1≠0,则f(x)在在x=1处与在x=2处均取不到极值,当k=2时,函数f(x)=(ex﹣1)(x﹣1)2.求导函数可得f'(x)=ex(x﹣1)2+2(ex﹣1)(x﹣1)=(x﹣1)(xex+ex﹣2),∴当x=1,f'(x)=0,且当x>1时,f'(x)>0,当x0<x<1时,f'(x)<0,故函数f(x)在(1,+∞)上是增函数;在(x0,1)上是减函数,从而函数f(x)在x=1取得极小值.对照选项.故选C.2.在的展开式中,含的项的系数是(
)A.-832 B.-672 C.-512 D.-192参考答案:A【分析】求出展开式中的系数减2倍的系数加的系数即可.【详解】含的项的系数即求展开式中的系数减2倍的系数加的系数即含的项的系数是.故选A.3.设在上是减函数,且,则下列各式成立的是
(
)A、
B、C、
D、参考答案:C略4.若向量,则(
)A.30 B.31 C.32 D.33参考答案:C【分析】先求出,再与相乘即可求出答案.【详解】因为,所以.故选:C.【点睛】本题考查了平面向量的坐标运算,考查了学生的计算能力,属于基础题.5.若平面α与β的法向量分别是,则平面α与β的位置关系是()A.平行 B.垂直 C.相交但不垂直 D.无法确定参考答案:B【考点】向量语言表述面面的垂直、平行关系.【分析】先计算向量与向量的数量积,根据数量积为0得到两向量垂直,从而判断出两平面的位置关系.【解答】解:=﹣2+8﹣6=0∴⊥∴平面α与平面β垂直故选B6.已知等差数列,若,,则该数列的公差为A.2
B.3
C.6
D.7参考答案:B7.从6人中选4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有
A.300种
B.240种
C.144种
D.96种参考答案:B略8.已知一组数的平均数是,方差,则数据的平均数和方差分别是
(
)
A.11,8
B.10,8
C.11,16
D.10,16参考答案:C9.正方体的全面积为a,它的顶点都在球面上,则这个球的表面积是:(
)A.;
B.;
C.;
D..参考答案:B【知识点】空间几何体的表面积与体积因为设正方体棱长为b,则球的直径为
所以,
故答案为:B10.已知实数满足不等式组若的最大值为1,则正数a的值为(
)A.
B.1
C.2
D.4参考答案:D作出不等式组对应的平面区域如图所示,是可行域内的点与定点连线的斜率,由图可见,点与点的连线的斜率最大,由,解得时,取最大值,解得,故选D.
二、填空题:本大题共7小题,每小题4分,共28分11.已知,设命题函数为减函数.命题当时,函数恒成立.如果“”为真命题,“”为假命题,则的取值范围是________.参考答案:若命题函数为减函数为真,则;又命题当时,函数恒为真,则,则,因为为真命题,为假命题,所以,中一真一假,若真假时,则,若假真时,则,所以实数的取值范围是.12.已知x,y取值如表:x01356y1m3m5.67.4画散点图分析可知:y与x线性相关,且求得回归方程为=x+1,则m的值为
.参考答案:【考点】BK:线性回归方程.【分析】计算、,根据线性回归方程过样本中心点,代入方程求出m的值.【解答】解:计算=×(0+1+3+5+6)=3,=×(1+m+3m+5.6+7.4)=,∴这组数据的样本中心点是(3,),又y与x的线性回归方程=x+1过样本中心点,∴=1×3+1,解得m=,即m的值为.故答案为:.【点评】本题考查了回归直线方程过样本中心点的应用问题,是基础题目.13.设,则四个数,,,中最小的是__________.参考答案:【分析】根据基本不等式,先得到,,再由作商法,比较与,即可得出结果.【详解】因为,所以,,又,所以,综上,最小.故答案为【点睛】本题主要考查由不等式性质比较大小,熟记不等式的性质,以及基本不等式即可,属于常考题型.14.如图正方体ABCD-A1B1C1D1中,与AD1异面且与AD1所成的角为90°的面对角线(面对角线是指正方体各个面上的对角线)共有________条.参考答案:1条与异面的面对角线分别为:、、、、,其中只有和所成的角为,故答案为1条.
15.若函数恰有2个零点,则a的取值范围为
.参考答案:(-2,-1]∪(0,1]∪{3}16.函数,的最小值是 。参考答案:17.“不等式对一切实数都成立”的充要条件是_____________.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图,在斜三棱柱中,侧面⊥底面,侧棱与底面成的角,.底面是边长为2的正三角形,其重心为点,是线段上一点,且.(Ⅰ)求证://侧面;(Ⅱ)求平面与底面所成锐二面角的正切值.
参考答案:(1)延长B1E交BC于点F,∽△FEB,BE=EC1,∴BF=B1C1=BC,从而点F为BC的中点.∵G为△ABC的重心,∴A、G、F三点共线.且,又GE侧面AA1B1B,∴GE//侧面AA1B1B.
(2)在侧面AA1B1B内,过B1作B1H⊥AB,垂足为H,∵侧面AA1B1B⊥底面ABC,∴B1H⊥底面ABC.又侧棱AA1与底面ABC成60°的角,AA1=2,∴∠B1BH=60°,BH=1,B1H=
在底面ABC内,过H作HT⊥AF,垂足为T,连B1T,由三垂线定理有B1T⊥AF,又平面B1CE与底面ABC的交线为AF,∴∠B1TH为所求二面角的平面角.
∴AH=AB+BH=3,∠HAT=30°,∴HT=AH.在Rt△B1HT中,,从而平面B1GE与底面ABC成锐二面角的正切值为.
解法2:(1)∵侧面AA1B1B⊥底面ABC,侧棱AA1与底面ABC成60°的角,∴∠A1AB=60°,
又AA1=AB=2,取AB的中点O,则AO⊥底面ABC.以O为原点建立空间直角坐标系O—如图,
则,,,,,.
∵G为△ABC的重心,∴.,∴,∴.
又GE侧面AA1B1B,∴GE//侧面AA1B1B.
(2)设平面B1GE的法向量为,则由得可取又底面ABC的一个法向量为
设平面B1GE与底面ABC所成锐二面角的大小为,则.
由于为锐角,所以,进而.故平面B1GE与底面ABC成锐二面角的正切值为.
略19.如图所示,PA⊥矩形ABCD所在的平面,M、N分别是AB、PC的中点,(1)求证:MN∥平面PAD;(2)求证:MN⊥CD;(3)若∠PDA=45°,求证:平面BMN⊥平面PCD.参考答案:【考点】平面与平面垂直的判定;直线与平面平行的判定.【专题】证明题;综合题.【分析】(1)取PD的中点E,连接AE、EN,根据三角形中位线的性质,我们可得四边形AMNE为平行四边形,即MN∥AE,进而根据线面平行的判定定理得到MN∥平面PAD.(2)由已知中PA⊥矩形ABCD所在的平面,根据线面垂直的性质及矩形的性质,可得PA⊥AB,AD⊥AB,由线面垂直的判定定理得AB⊥平面PAD,结合线面垂直的判定定理及性质,即可得到MN⊥CD;(3)由已知中PA⊥矩形ABCD所在的平面,∠PDA=45°,E是PD的中点,可得MN⊥PD,MN⊥CD,由线面线面垂直的判定定理得MN⊥平面PCD,再由面面垂直的判定定理可得面BMN⊥平面PCD.【解答】证明:(1)如图所示,取PD的中点E,连接AE、EN,则有EN===AM,EN∥CD∥AB∥AM,故AMNE是平行四边形,∴MN∥AE,∵AE?平面PAD,MN?平面PAD,∴MN∥平面PAD.(2)∵PA⊥平面ABCD,∴PA⊥AB,又AD⊥AB,∴AB⊥平面PAD,∴AB⊥AE,即AB⊥MN,又CD∥AB,∴MN⊥CD.(3)∵PA⊥平面ABCD,∴PA⊥AD,又∠PDA=45°,E是PD的中点,∴AE⊥PD,即MN⊥PD,又MN⊥CD,∴MN⊥平面PCD,∵MN?平面BMN∴平面BMN⊥平面PCD.【点评】本题考查的知识点是平面与平面垂直的判定,直线与平面平行的判定,熟练掌握空间直线与平面平行及垂直的判定和性质是解答本题的关键.20.已知向量,函数(Ⅰ)求函数的最小正周期T及单调减区间;(Ⅱ)已知a,b,c分别为ABC内角A,B,C的对边,其中A为锐角,,,且.求角A,边的长和ABC的面积。参考答案:解:(Ⅰ)(1)…………2分
…………4分单调递减区间是
………6分(Ⅱ);………………8分…………10分.
……………12分略21.(本小题满分12分)高校招生是根据考生所填报的志愿,从考试成绩所达到的最高第一志愿开始,按顺序分批录取,若前一志愿不能录取,则依次给下一个志愿(同批或下一批)录取.某考生填报了三批共6个不同志愿(每批2个),并对各志愿的单独录取以及能考上各批分数线的概率进行预测,结果如“表一”所示(表中的数据为相应的概率,a、b分别为第一、第二志愿).(Ⅰ)求该考生能被第2批b志愿录取的概率;批次高考上线ab第1批0.60.80.4第2批0.80.90.5第3批0.90.950.8(Ⅱ)求该考生能被录取的概率;(Ⅲ)如果已知该考生高考成绩已达到第2批分数线却未能达到第1批分数线,请计算其最有可能在哪个志愿被录取?(以上结果均保留二个有效数字)参考答案:表二
(Ⅲ)由已知,该考生只可能被第2或第3批录取,仿上计算可得各志愿录取的概率如“表二”所示.
批次ab第2批0.90.05第3批0.0480.0020从表中可以看出,该考生被第2批a志愿录取的概率最大,故最有可能在第2批a志愿被录取.------14分
22.如图所示,在直角梯形ABCD中,AB∥CD,∠BCD=90°,BC=CD=2,AF=BF,EC∥FD,FD⊥底面ABCD,M是AB的中点.(1)求证:平面CFM⊥平面BDF;(2)点N在CE上,EC=2,FD=3,当CN为何值时,MN∥平面BEF.参考答案:【考点】直线与平面平行的判定;平面与平面垂直的判定.【分析】(1)推导出四边形BCDM是正方形,从而BD⊥CM,又DF⊥CM,由此能证明CM⊥平面BDF.(2)过N作NO∥EF,交EF于O,连结MO,则四边形EFON是平行四边形,连结OE,则四边形BMON是平行四边形,由此能推导出N是CE的中点时,MN∥平面BEF.【解答】证明:(1)∵FD⊥底面ABCD,∴FD⊥AD,FD⊥BD∵AF=BF,∴△ADF≌△BDF,∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大学工作计划模板合集5篇
- 消防演练活动总结
- 音乐组教研工作计划(锦集5篇)
- 幼儿园班级计划撰写培训心得
- 暑假学生学习计划模板合集八篇
- 竖笛兴趣小组的活动计划
- 二年级下学期数学教学计划三篇
- 我的青春梦想演讲稿合集15篇
- 餐饮简单辞职报告(9篇)
- 中国与周边国家的领土纠纷
- 3D打印技术在医疗领域的应用
- 2024年辅警考试公基常识300题(附解析)
- 人员招聘的程序与信息发布
- 仓库班长年终总结
- 北京市海淀区2023-2024学年四年级上学期期末英语试题
- LNG液化天然气项目事故后果模拟分析评价
- 2024年湖北省汉江国有资本投资集团有限公司招聘笔试参考题库含答案解析
- 脂肪肝健康教育-课件
- 广州市九区联考2023-2024学年高一上学期期末教学质量监测数学试卷(原卷版)
- 体育与健康(水平二)《花样跳绳一级动作(18课时)》大单元教学计划
- 游戏方案模板
评论
0/150
提交评论