专题07 一元二次方程解法与应用(学生版)_第1页
专题07 一元二次方程解法与应用(学生版)_第2页
专题07 一元二次方程解法与应用(学生版)_第3页
专题07 一元二次方程解法与应用(学生版)_第4页
专题07 一元二次方程解法与应用(学生版)_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

知识点01:解一元二次方程【高频考点精讲】1.用“配方法”解一元二次方程(1)把原方程化为ax2+bx+c=0(a≠0)的形式;(2)方程两边同时除以二次项系数,使二次项系数为1,并把常数项移到方程右边;(3)方程两边同时加上一次项系数一半的平方;(4)把左边配成一个完全平方式,右边化为一个常数;(5)如果右边是非负数,可以通过直接开平方法求解;如果右边是负数,则判定此方程无实数解。2.用“因式分解法”解一元二次方程(1)移项,使方程的右边化为零;(2)将方程的左边分解为两个一次因式的乘积;(3)令每个因式分别为零,得到两个一元一次方程;(4)解这两个一元一次方程,它们的解就是原方程的解。3.用“换元法”解一元二次方程(1)把方程中某个含有未知数的式子看成一个整体,用另一个未知数去替换它,从而将原方程转化成关于新未知数的方程,这种方法叫做“换元法”。(2)“换元法”关键是构造元和设元,目的是变换研究对象,将问题转移至新对象的知识背景中去研究,从而使复杂问题简单化。知识点02:高次方程和无理方程【高频考点精讲】1.高次方程(1)一般地,最高次项的次数高于2次的方程,叫做高次方程。(2)高次方程的解法通过适当方法把高次方程转化为次数较低的方程求解。所以,解高次方程一般要降次,将高次方程转化成二次方程或一次方程。2.无理方程(1)方程中含有根式,且开方数是含有未知数的代数式,这样的方程叫做无理方程。(2)解无理方程关键是去根号,将其转化为整式方程。(3)常用方法:乘方法,配方法,因式分解法,设辅助元素法。注意:用乘方法解无理方程,通常会产生增根,应当注意验根。知识点03:根的判别式及根与次数关系【高频考点精讲】1.根的判别式一元二次方程ax2+bx+c=0(a≠0)的根与根的判别式(△=b2﹣4ac)有如下关系:(1)当△>0时,方程有两个不相等的两个实数根;反过来,当方程有两个不相等的两个实数根时,△>0。(2)当△=0时,方程有两个相等的两个实数根;反过来,当方程有两个相等的两个实数根时,△=0。(3)当△<0时,方程无实数根;反过来,当方程无实数根时,△<0。2.根与系数的关系(1)如果x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,那么x1+x2=,x1x2=(2)根与系数的关系可以解决以下问题①已知方程及方程的一个根,求另一个根及未知数。②求关于根的式子的值,例如求x12+x22。③判断两根的符号;④由两根满足的条件,确定字母的取值。知识点04:由实际问题抽象出一元二次方程【高频考点精讲】在解决实际问题时,要明确已知和未知,找出相等关系,设出未知数,用方程表示已知量与未知量之间的等量关系,即列出一元二次方程。检测时间:90分钟试题满分:100分难度系数:0.57一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2023•锦州)若关于x的一元二次方程kx2﹣2x+3=0有两个实数根,则k的取值范围是()A.k< B.k≤ C.k<且k≠0 D.k≤且k≠02.(2分)(2023•西藏)已知一元二次方程x2﹣3x+2=0的两个根为x1、x2,则的值为()A.﹣3 B. C.1 D.3.(2分)(2023•聊城)若一元二次方程mx2+2x+1=0有实数解,则m的取值范围是()A.m≥﹣1 B.m≤1 C.m≥﹣1且m≠0 D.m≤1且m≠04.(2分)(2023•阜新)近年来,由于新能源汽车的崛起,燃油汽车的销量出现了不同程度的下滑,经销商纷纷开展降价促销活动.某款燃油汽车今年3月份售价为23万元,5月份售价为16万元.设该款汽车这两月售价的月均下降率是x,则所列方程正确的是()A.16(1+x)2=23 B.23(1﹣x)2=16 C.23﹣23(1﹣x)2=16 D.23(1﹣2x)=165.(2分)(2023•河南)关于x的一元二次方程x2+mx﹣8=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根 C.只有一个实数根 D.没有实数根6.(2分)(2023•赤峰)用配方法解方程x2﹣4x﹣1=0时,配方后正确的是()A.(x+2)2=3 B.(x+2)2=17 C.(x﹣2)2=5 D.(x﹣2)2=177.(2分)(2023•广西)据国家统计局发布的《2022年国民经济和社会发展统计公报》显示,2020年和2022年全国居民人均可支配收入分别为3.2万元和3.7万元.设2020年至2022年全国居民人均可支配收入的年平均增长率为x,依题意可列方程为()A.3.2(1﹣x)2=3.7 B.3.2(1+x)2=3.7 C.3.7(1﹣x)2=3.2 D.3.7(1+x)2=3.28.(2分)(2023•福建)根据福建省统计局数据,福建省2020年的地区生产总值为43903.89亿元,2022年的地区生产总值为53109.85亿元.设这两年福建省地区生产总值的年平均增长率为x,根据题意可列方程()A.43903.89(1+x)=53109.85 B.43903.89(1+x)2=53109.85 C.43903.89x2=53109.85 D.43903.89(1+x2)=53109.859.(2分)(2023•泸州)关于x的一元二次方程x2+2ax+a2﹣1=0的根的情况是()A.没有实数根 B.有两个相等的实数根 C.有两个不相等的实数根 D.实数根的个数与实数a的取值有关10.(2分)(2023•衢州)某人患了流感,经过两轮传染后共有36人患了流感.设每一轮传染中平均每人传染了x人,则可得到方程()A.x+(1+x)=36 B.2(1+x)=36 C.1+x+x(1+x)=36 D.1+x+x2=36二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2023•随州)已知关于x的一元二次方程x2﹣3x+1=0的两个实数根分别为x1和x2,则x1+x2﹣x1x2的值为.12.(2分)(2023•牡丹江)张师傅去年开了一家超市,今年2月份开始盈利,3月份盈利5000元,5月份盈利达到7200元,从3月到5月,每月盈利的平均增长率都相同,则每月盈利的平均增长率是.13.(2分)(2023•济南)关于x的一元二次方程x2﹣4x+2a=0有实数根,则a的值可以是(写出一个即可).14.(2分)(2023•内江)已知a、b是方程x2+3x﹣4=0的两根,则a2+4a+b﹣3=.15.(2分)(2023•德州)设x1,x2是关于x的一元二次方程x2﹣2(m+1)x+m2+2=0的两个实数根,且(x1+1)(x2+1)=8,则m的值为.16.(2分)(2023•重庆)某新建工业园区今年六月份提供就业岗位1501个,并按计划逐月增长,预计八月份将提供岗位1815个,设七、八两个月提供就业岗位数量的月平均增长率为x,根据题意,可列方程为.17.(2分)(2023•雅安)已知关于x的方程x2+mx﹣4=0的一个根为1,则该方程的另一个根为.18.(2分)(2023•金昌)关于x的一元二次方程x2+2x+4c=0有两个不相等的实数根,则c=(写出一个满足条件的值).19.(2分)(2023•娄底)若m是方程x2﹣2x﹣1=0的根,则m2+=.20.(2分)(2023•宜昌)已知x1,x2是方程2x2﹣3x+1=0的两根,则代数式的值为.三.解答题(共8小题,满分60分)21.(6分)(2023•齐齐哈尔)解方程:x2﹣3x+2=0.22.(8分)(2023•襄阳)关于x的一元二次方程x2+2x+3﹣k=0有两个不相等的实数根.(1)求k的取值范围;(2)若方程的两个根为α,β,且k2=αβ+3k,求k的值.23.(8分)(2023•通辽)阅读材料:材料1:关于x的一元二次方程ax2+bx+c=0(a≠0)的两个实数根x1,x2和系数a,b,c,有如下关系:x1+x2=﹣,x1x2=.材料2:已知一元二次方程x2﹣x﹣1=0的两个实数根分别为m,n,求m2n+mn2的值.解:∵m,n是一元二次方程x2﹣x﹣1=0的两个实数根,∴m+n=1,mn=﹣1.则m2n+mn2=mn(m+n)=﹣1×1=﹣1.根据上述材料,结合你所学的知识,完成下列问题:(1)应用:一元二次方程2x2+3x﹣1=0的两个实数根为x1,x2,则x1+x2=,x1x2=.(2)类比:已知一元二次方程2x2+3x﹣1=0的两个实数根为m,n,求m2+n2的值;(3)提升:已知实数s,t满足2s2+3s﹣1=0,2t2+3t﹣1=0且s≠t,求的值.24.(8分)(2023•遂宁)我们规定:对于任意实数a、b、c、d有[a,b]*[c,d]=ac﹣bd,其中等式右边是通常的乘法和减法运算,如:[3,2]*[5,1]=3×5﹣2×1=13.(1)求[﹣4,3]*[2,﹣6]的值;(2)已知关于x的方程[x,2x﹣1]*[mx+1,m]=0有两个实数根,求m的取值范围.25.(8分)(2023•东营)如图,老李想用长为70m的栅栏,再借助房屋的外墙(外墙足够长)围成一个矩形羊圈ABCD,并在边BC上留一个2m宽的门(建在EF处,另用其他材料).(1)当羊圈的长和宽分别为多少米时,能围成一个面积为640m2的羊圈?(2)羊圈的面积能达到650m2吗?如果能,请你给出设计方案;如果不能,请说明理由.26.(8分)(2023•淮安)为了便于劳动课程的开展,学校打算建一个矩形生态园ABCD(如图),生态园一面靠墙(墙足够长),另外三面用18m的篱笆围成.生态园的面积能否为40m2?如果能,请求出AB的长;如果不能,请说明理由.27.(8分)(2023•南充)已知关于x的一元二次方程x2﹣(2m﹣1)x﹣3m2+m=0.(1)求证:无论m为何

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论