




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届北京市房山区九级数学七年级第一学期期末考试模拟试题
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再
选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.-2(。一力去括号的结果是()
A.—2α—bB.—2a+bC.一2a—2bD.-2α+2Z?
2.我市冬季里某一天的最低气温是T(TC,最高气温是5℃,这一天的温差为
A.-5℃B.5℃C.10℃D.15℃
3.若方程2x+l=-1的解是关于X的方程1-2(x-a)=2的解,则a的值为()
31
A.-1B.1C.--D.--
22
4.近年来,我省奋力建设“生态环境”,为此欣欣特别制作了一个正方体玩具,其展开图如图所示,则原正方体中与
“环”字相对的字是()
建设
生态
环境
A.建B.设
C.生D.态
5.计算(—3)+4的结果是()
A.-7B.-1C.1D.7
6.如图是由5个大小相同的正方体组合而成的几何体,从正面看得到的图形是()
正面
7.若关于X的方程2x+α-4=0的解是x=-2,则α=()
A.-8B.OC.2D.8
8.如果+5米表示一个物体向东运动5米,那么-3米表示().
A.向西走3米B.向北走3米C.向东走3米D.向南走3米
9.两根木条,一根长60cm,一根长IOOCWn将它们的一个端点重合,放在同一条直线上,此时两根木条中点间的距
离()
A.20cmB.80Cm
C.160CmD.20cm或SOcm
10.如果有理数。力,满足">0,α+匕<0,则下列说法正确的是()
A.a>O,b>OB.«<0,Z?>0C.a<O,b<OD.a>O,b<O
二、填空题(本大题共有6小题,每小题3分,共18分)
11.如图,点3在点A的南偏西77°方向上,点C在点A的南偏西18°37'方向上,则NBAC的度数是.
2
12.某活动小组的男生人数占全组人数的一半,若再增加6个人男生,那么男生人数就占全组人数的则这个活动
小组的人数是一
13.据《2011年国民经济与社会发展统计公报》报道,2()∏年我国国民生产总值为471564亿元,471564亿元用科学
记数法表示为(保留三个有效数字)元.
14.——的立方根是____.
64
15.某实验学校为了解七年级1200名学生体质健康情况,从中抽取了100名学生进行测试,在这个问题中,样本容
量是.
16.一个角的大小为60。1325",则这个角的余角的大小为.
三、解下列各题(本大题共8小题,共72分)
17.(8分)广州恒大足球队在亚冠足球联赛小组赛中屡次晋级.亚冠小组赛规则:①小组赛内有4支球队,每两支球
队之间要进行两场比赛;②每队胜一场得3分,平一场得1分,负场得0分;③小组赛结束,积分前两名出线.广州
恒大队经过6场小组赛后,总积分为10分,且负的场数是平的场数的两倍,求广州恒大队在小组赛共打平了多少场比
赛?
18.(8分)我市城市居民用电收费方式有以下两种:
(甲)普通电价:全天0∙53元/度;
(乙)峰谷电价:峰时(早8:00~晚21:00)0.56元/度;谷时(晚21:00~早8:00)0.36元/度.
估计小明家下月总周甩篁为200度,
⑴若其中峰时电量为50度,则小明家按照哪种方式付电费比较合适?能省多少元?
⑵请你帮小明计算,峰时电量为多少度时,两种方式所付的电费相等?
⑶到下月付费时,小明发现那月总用电里为200度,用峰谷电价付费方式比普通电价付费方式省了14元,求那月的
峰时电量为多少度?
19.(8分)化简后再求值:x+2Oy2-2x)-4(2x-y2),其中x=2,y=-1.
20.(8分)在预防新型冠状病毒期间,电子体温枪成为最重要的抗疫资源之一.某品牌电子体温枪由甲、乙两部件各
一个组成,加工厂每天能生产甲部件600个,或者生产乙部件400个,现要在30天内生产最多的该种电子体温枪,则
甲、乙两种部件各应生产多少天?
21.(8分)已知NAQB=。,过点。作N5OC=90°.
(1)若a=30°,求NAoC的度数;
(2)已知射线OE平分NAOC,射线OF平分NBOC.
①若C=50°,求NEo尸的度数;
②若90°<α<180°,则NEo/的度数为(直接填写用含α的式子表示的结果)
22.(10分)为了丰富学生的课余生活,宣传我县的旅游景点,某校将举行“我为松桃旅游代言”的活动,现随机抽取
了部分学生进行主题为“你想去的景点是—”的问卷调查,要求学生只能去“A(正大苗王成),B(寨英古镇),C(盘
石黔东草海),D(乌罗潜龙洞)”四个景点选择一项,根据调查结果,绘制了如下两幅不完整的统计图.回答下列问题:
⑵请把条形统计图补充完整;
⑶该学校共有3000名学生,试估计该校最想去盘石黔东草海的学生人数.
23.(10分)为了解某地区30万电视观众对新闻、动画、娱乐三类节目的喜爱情况,根据老年人、成年人、青少年各
年龄段实际人口的比例3:5:2,随机抽取一定数量的观众进行调查,得到如下统计图.
(1)上面所用的调查方法是(填“全面调查”或“抽样调查”);
(2)写出折线统计图中A、B所代表的值;A:;B:;
(3)求该地区喜爱娱乐类节目的成年人的人数.
24.(12分)已知数轴上有A、B、C三个个点对应的数分别是a、b、c,且∣α+24∣+∣0+10∣+(C-IO)?=0;动点P
从A出发,以每秒1个单位的速度向终点C移动,设移动动时间为t秒
BoC
»
(1)求a、b、C的值;
(2)若点P到A点距离是到B点距离的2倍,求点P的对应的数;
(3)当点P运动到B点时,点Q从A点出发,以每秒2个单位的速度向终点C移动,当点Q运动几秒时,P、Q两
点之间的距离为8?请说明理由
参考答案
一、选择题(每小题3分,共30分)
1、D
【分析】直接根据去括号的法则解答即可.
【详解】解:原式=-2a+2b.
故选D.
【点睛】
本题主要考查了去括号的法则,熟练掌握法则是解题的关键.
2、D
【详解】解:5-(-10)=5+10=15βC.
故选D.
3^D
【解析】分析:解第一个方程,可得X的值,把X的值代入第二个方程,解之可得答案.
详解:解2x+l=-l,得:X=-L
把X=T代入1-2(x-a)=2,得:
1-2(-1-α)=2.
解得:«=-ɪ.
2
故选D.
点睛:本题考查了同解方程,利用同解方程得出关于。的方程是解题的关键.
4,B
【分析】在正方体的表面展开图中,相对两个面之间一定相隔一个正方形,或者想象一下折起来后哪两个字对应.
【详解】在正方体的表面展开图中,相对两个面之间一定相隔一个正方形,所以原正方体中与“环”相对的字为
“设”.故选B.
【点睛】
正方体的展开图是常考的内容,培养想象能力是解题的关键.
5、C
【分析】根据异号两数相加,取绝对值较大的数的符号,再用较大的绝对值减去较小的绝对值,可得答案
【详解】解:(-3)+4=+(4-3)=1.
故选C.
考点:有理数的加法.
6、C
【解析】根据三视图的定义:主视图是从正面观察得到的图形解答即可.
【详解】从正面观察可知:图形有两层,下层有3个正方体,上层左边有1个正方体,
观察4个选项,只有C符合上面的几何体,
故选C.
【点睛】
本题考查了简单组合体的三视图,注意掌握主视图、俯视图、左视图的观察方向.
7、D
【分析】把x=-2代入方程计算即可求出α的值.
【详解】解:把x=-2代入方程得:-4+α-4=0,
解得:0=8,
故选:D.
【点睛】
此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.
8、A
【解析】:+5米表示一个物体向东运动5米,
Λ-3米表示向西走3米,
故选A.
9、D
【分析】设较长的木条为A3,较短的木条为BC,根据中点定义求出BM、BN的长度,然后分①BC不在AB上时,
MN=BM+BN,②5C在AB上时,MN=BM-BN,分别代入数据进行计算即可得解.
【详解】解:如图,设较长的木条为A5=IOOc"?,较短的木条为8C=60cm,
∙.∙ΛΛN分别为A8、8C的中点,
.'.BM=-AB=ɪ×100=50(c∕n),
22
BN=-BC=-X60=30(cm),
22
①如图1,3C不在A5上时,MN=BM+BN=50+30=80Ccm),
②如图2,5C在AB上时,MN=BM-BN=50-30=20(cm),
综上所述,两根木条的中点间的距离是80cm或20cm.
故选:D.
IiII,
AMBNC
图1
ACMNB
图2
【点睛】
此题主要考查线段的和差关系,解题的关键是熟知中点的性质.
10、C
【分析】此题首先利用同号两数相乘得正判定a,b同号,然后根据同号两数相加,符号取原来加数的符号.即可判定
a,b的符号.
【详解】解:∙.∙ab>L
ʌa,b同号,
Va+b<b
Λa<l,b<l.
故选:C.
【点睛】
此题比较简单,主要利用了有理数的加法法则和乘法法则解决问题.
二、填空题(本大题共有6小题,每小题3分,共18分)
11、58°23,
【分析】由题意直接根据角的和差进行运算即可求出NBAC的度数.
【详解】解:♦.,点B在点A的南偏西77°方向上,点C在点A的南偏西18°37,方向上,
ΛZBAC=77o-18°37,=58°23',
故答案为:58°23,.
【点睛】
本题考查方向角以及度分秒的换算,正确的识别图形以及熟练运用度分秒的换算是解题的关键.
12、12
【分析】设这个课外活动小组的人数为X,则男生人数为1x,然后根据再增加6名男生,那么男生人数就占全组人数
2
的!■列方程,再解方程即可.
【详解】设这个课外活动小组的人数为X
12
根据题意得一x+6=—(x+6)
23
解得x=12(人)
所以这个课外活动小组的人数为12人.
故答案:12
【点睛】
本题查考了一元一次方程的实际应用,根据题中已知找出等量关系,列出一元一次方程,求解即可.
13、4.72×10,3
【分析】首先用科学记数法的表示成αX10"的形式,其中IWIal<10,n为整数.再保留有效数字,有效数字的计算
方法是:从左边第一个不是O的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面
的a有关,与10的多少次方无关.
【详解】解:471564亿=471564OOOOOOoo=4.71564×JQ13≈4.72×ɪθ'3,
故答案为:4.72×10l3.
【点睛】
本题考查科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.掌握以上知识是解题的关键.
【分析】根据立方根的定义解答即可.
【详解】解:•••(—,]=--
[4j64
∙*∙-的立方根是—.
644
故答案为-L.
4
【点睛】
此题主要考查了立方根定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互
逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的符号相同.
15、100
【解析】试题解析:在这个问题中样本是100名学生的健康情况,样本容量是100.
故答案为:100.
16、29°46'35”
【分析】根据余角的概念:两角之和为90°计算即可.
【详解】余角的大小为90o-60o13'25"=29o46'35"
故答案为:29°46'35".
【点睛】
本题主要考查余角,掌握余角的概念是解题的关键.
三、解下列各题(本大题共8小题,共72分)
17、广州恒大队在小组赛共打平了1场比赛.
【分析】设广州恒大队在小组赛共打平了X场比赛,则负的场数是2x场,胜的场数是(6-3x),根据得出总分为10
分列出方程解答即可.
【详解】解:设广州恒大队在小组赛共打平了X场比赛,则负的场数是2x场,胜的场数是(6-3x),由题意得
3(6-3x)+x=10,
解得X=I
经检验:X=I是方程的解,且符合题意.
答:广州恒大队在小组赛共打平了1场比赛.
【点睛】
本题考查一元一次方程的应用,解本题的关键是掌握列一元一次方程的步骤:审清题意,分清已知量和未知量;设未
知数;根据题目中的等量关系列出代数式,进而列出方程;解方程,求未知数的值;检验;写出答案.
18、(1)按峰谷电价付电费合算.能省106—82=24元;(2)峰时电量为170度时,两种方式所付的电费相等;(3)
那月的峰时电量为100度.
【解析】⑴按普通电价付费:200X0.53=106元.
按峰谷电价付费:50X0.56+(200-50)×0.36=82元.
二按峰谷电价付电费合算.能省106—82=24元.
⑵0.56x+0.36(2OO-X)=106X=170,
.∙.峰时电量为170度时,两种方式所付的电费相等.
⑶设那月的峰时电量为X度,
根据题意得:0.53×200-[0.56x+0.36(200-χ)]=14,
解得x=100,
.∙.那月的峰时电量为100度.
19、原式=-llx+10y2,原式=-12;
【解析】试题分析:先对所求的式子去括号、合并同类项得出最简整式,代入X和y的值即可.
22222
试题解析:x+2(3y-2x)-4(2x-y)=x+6y-4x-8x+4y=-llx+10yj
当x=2,y=-l时,原式=-22+IO=-12.
20、甲部件应制作1天,则乙部件应制作18天.
【分析】设甲部件应制作X天,则乙部件应制作(30-X)天,分别表示出甲部件和乙部件的个数,根据某品牌电子体
温枪由甲、乙两部件各一个组成,得出甲部件的个数=乙部件的个数,列出方程求解即可.
【详解】解:设甲部件应制作X天,则乙部件应制作(30-X)天,
由题意得:600x=400(30-x),
解得:x=l.
所以,乙部件应制作30-x=3(M=18(天).
答:甲部件应制作1天,则乙部件应制作18天.
【点睛】
本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方
程,再求解.
21、(1)60°或120°;(2)①25°;②La或1800-La
22
【分析】(1)分两种情况:当射线。4、OC在射线OB同侧时,当射线Q4、OC在射线OB两侧时,分别求出NAoC
的度数,即可;
(2)①分两种情况:当射线。4、OC在射线OB同侧时,当射线Q4、OC在射线08两侧时,分别求出NEob的
度数,即可;②分两种情况:当射线OC在NAoB内部时,当射线OC在NAOB外部时,分别用α表示出NEOF的
度数,即可.
【详解】(1)当射线Q4、OC在射线同侧时,如图1所示,
TZfiOC=90°,ZAC>β=30°,
ΛZAOC^NBoC-ZAOB=90°-30°=60°,
当射线。4、OC在射线OB两侧时,如图2所示,
:NBOC=90°,ZAOB=30°,
.∙.ZAOC=ZBOC+ZAOB=90°+30°=120°.
综上可得,NAOC的度数为60°或120。;
(2)①当射线04、OC在射线OB同侧时,如图3所示,
Y射线OE平分NAoC,
:.NCoE=-ZA0C=-(NBoC-NAoB),
22
:N8OC=9()°,ZAO6=50°,
ΛZCOE=∣(90o-50o)=20°,
射线O尸平分NBOC,
.∙.ZCOF=-ZBOC=LX90°=45°,
22
二ZEOF=ZCOF-NeoE=45°-20°=25°.
当射线。4、OC在射线OB两侧时,如图4所示,
•••射线OE平分NAOC,
ΛZCOE=-ZAOC=-(ZBOC+ZAOB),
22
VZBOC=90°,ZAOB=50°,
:.NCoE=B(90。+50。)=70。,
:射线OF平分NBOC,
ΛNCOF=-ZBOC=i×90°=45°,
22
:.NEoF=ZCOE-ZCOF=70o-45o=25o,
综上可得,ZEoE的度数为25。;
②当射线OC在NAOB内部时,如图5,
V射线OE平分NAOC,
:.ΛCOE=-ZAOC,
2
∙.∙射线OF平分NBOC,
ΛNCoF=LNBoC,
2
•;ZAoB=a,
:.ZEOF=ZCOF+ZCOE=-ZBOC+-ZAOC=-ZAOB=-a.
2222
当射线OC在NAOB外部时,如图6,
V射线OE平分NAOC,
ΛNCOE=-ZAOC=-(360o-NBoC-ZAOB),
22
∙.∙NBOC=90°,ZAOB=a,
:.ZCOE=1(270o-a),
∙.∙射线OF平分NBOC,
.∙.NCOF=-ZBOC」X90。=45°,
22
.∙.ZEOF=ZCOE+ZCOF=ɪ(270°—e)+45°=180°—;。,
综上所述:NEOF的度数为:Ja或180。—'c.
22
故答案是:La或180°-!0.
22
F
【点睛】
本题主要考查角的平分线的定义以及角度的运算,画出示意图,根据角的和差倍分运算以及角平分线的定义,分类进
行计算,是解题的关键.
22、⑴本次调查的学生的人数为60人;⑵补全条形图见解析;⑶估计该校最想去该校去盘石黔东草海的学生人数约为
1150人.
【分析】(1)用A的人数15除以所占比例25%即可得出总人数;
(2)总人数减去A、B、D的人数即可得出C的人数;
(3)用C的人数除以本次调查的总人数60,再乘以学校总人数即可.
【详解】解:(1)由题意知,本次调查的学生的人
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 某大型房地产公司合同
- 小麦秸秆购销合同
- 酒店管理与经营合作协议
- 建筑工地承包食堂的合同
- 重庆市居间合同
- 人教版五年级下册求最大公因数练习100题及答案
- Unit 5 Launching your career Apply for a summer job教学设计-2024-2025学年高中英语人教版(2019)选择性必修第四册
- 2025年云安全服务项目建议书
- 24《司马光》教学设计-2024-2025学年语文三年级上册统编版
- 油罐区智能防雷接地设计方案
- 膝关节镜手术后康复
- 安徽工程大学《回归分析》2023-2024学年第一学期期末试卷
- 读书分享《给教师的建议》课件
- 《中小学校园食品安全和膳食经费管理工作指引》专题讲座
- 广东省茂名市2023-2024学年高一上学期物理期末试卷(含答案)
- 江苏省苏州市昆山、太仓、常熟、张家港四市2024-2025学年八年级上学期期中阳光测评生物学试卷(含答案)
- 沙发市场需求与消费特点分析
- 污水处理述职报告
- T-YACX 002-2024 栀子花茶团体标准
- 产科胎膜早破课件
- 口腔科放射防护制度
评论
0/150
提交评论