版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年湖南师大附中教育集团中考数学三检试卷一、选择题(本大题共10个小题,每小题3分,共30分)1.(3分)如所示4个图形中,是中心对称图形的是()A. B. C. D.2.(3分)抛物线y=(x﹣1)2+3的对称轴是()A.直线x=1 B.直线x=3 C.直线x=﹣1 D.直线x=﹣33.(3分)在双曲线的任意一支上,y都随x的增大而减小,则k的值可以是()A.﹣2 B.0 C.2 D.﹣14.(3分)县林业部门考察银杏树苗在一定条件下移植的成活率,所统计的银杏树苗移植成活的相关数据如下表所示:移植的棵数a1003006001000700015000成活的棵数b84279505847633713581成活的频率0.840.930.8420.8470.9050.905根据表中的信息,估计银杏树苗在一定条件下移植成活的概率为(精确到0.1)()A.0.905 B.0.90 C.0.9 D.0.85.(3分)如图,在平面直角坐标系中,△OAB的顶点为O(0,0),A(4,3),B(3,0).以点O为位似中心,在第三象限内得到与△OAB的位似比为的位似图形△OCD,则点C的坐标为()A.(﹣1,﹣1) B.(﹣,﹣1) C.(﹣1,﹣) D.(﹣2,﹣1)6.(3分)如图,在△ABC中,DE∥AB,且,则的值为()A. B. C. D.7.(3分)已知反比例函数的图象上有点A(2,y1),B(1,y2),C(﹣3,y3),则关于y1,y2,y3大小关系正确的是()A.y1>y2>y3 B.y2>y1>y3 C.y1>y3>y2 D.y3>y1>y28.(3分)如图,△ABC的内切圆⊙O分别与AB,BC,AC相切于点D,E,F,且AD=3,BE=2,CF=4,则△ABC的周长为()A.18 B.17 C.16 D.159.(3分)元旦将至,九(1)班全体学生互赠贺卡,共赠贺卡1980张,问九(1)班共有多少名学生?设九(1)班共有x名学生,那么所列方程为()A.x2=1980 B.x(x+1)=1980 C.x(x﹣1)=1980 D.x(x﹣1)=198010.(3分)如图,在平面直角坐标系中,O为原点,OA=OB=3,点C为平面内一动点,BC=,连接AC,点M是线段AC上的一点,且满足CM:MA=1:2.当线段OM取最大值时,点M的坐标是()A.(,) B.(,) C.(,) D.(,)二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)已知点A(﹣2,b)与B(a,3)点关于原点对称,则a+b=.12.(3分)如图,四边形ABCD是圆内接四边形,∠C=120°,求∠A的度数为度.13.(3分)已知扇形的半径为2cm,圆心角为120°,则此扇形的弧长是cm.14.(3分)如图,A、B、C、D为一个正多边形的顶点,O为正多边形的中心,若∠ADB=20°,则这个正多边形的边数为.15.(3分)如图,在网格中,每个小正方形的边长均为1,每个小正方形的顶点称为格点.点A、B、C三点都在格点上,则sin∠ABC=.16.(3分)如图,平行于x轴的直线与函数y=(k1>0,x>0)和y=(k2>0,x>0)的图象分别相交于A,B两点.点A在点B的右侧,C为x轴上的一个动点,若△ABC的面积为4,则k1﹣k2的值为.三、解答题(本大题共9个小题,第17、18、19题每题6分,第20、21题每题8分,第22、23题每题9分,第24、25题每题10分,共72分)17.(6分)计算:.18.(6分)如图,在平面直角坐标系中,一次函数与反比例函数交于A(m,6),B(4,﹣3)两点,与y轴交于点C,连接OA,OB.(1)求反比例函数和一次函数的表达式;(2)求△AOB的面积.19.(6分)如图,灯塔B位于港口A的北偏东58°方向,且A,B之间的距离为30km,灯塔C位于灯塔B的正东方向,且B,C之间的距离为10km.一艘轮船从港口A出发,沿正南方向航行到达D处,测得灯塔C在北偏东37°方向上,灯塔B到直线AD的距离为BE.(1)求BE的长;(2)求DE的长(结果精确到0.1).(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)20.(8分)为了丰富学生们的课余生活,学校准备开展第二课堂,有四类课程可供选择,分别是“A.书画类、B.文艺类、C.社会实践类、D.体育类”.现随机抽取了七年级部分学生对报名意向进行调查,并根据调查结果绘制了两幅不完整的统计图,请你根据图表信息回答下列问题:(1)本次被抽查的学生共有名,扇形统计图中“A.书画类”所占扇形的圆心角的度数为度;(2)请你将条形统计图补全;(3)若该校七年级共有600名学生,请根据上述调查结果估计该校学生选择“C.社会实践类”的学生共有多少名?(4)本次调查中抽中了七(1)班王芳和小颖两名学生,请用列表法或画树状图法求她们选择同一个项目的概率.21.(8分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D.(1)求证:△ADC∽△CDB;(2)若AD=2,BD=8,求CD.22.(9分)如图,AB,CD为⊙O的直径,C为⊙O上一点,过点C的切线与AB的延长线交于点P,∠ABC=2∠BCP,点E是的中点,弦CE,BD相交于点F.(1)求∠OCB的度数;(2)若EF=3,求⊙O直径的长.23.(9分)为纪念爱国诗人屈原,人们有了端午节吃粽子的习俗.下表列出了小欢妈妈、小乐妈妈端午节前在超市购买粽子的数量(单位:个)和付款金额(单位:元).豆沙粽数量肉粽数量付款金额小欢妈妈2030270小乐妈妈3020230(1)求豆沙粽和肉粽的单价;(2)为进一步提升粽子的销量,超市将两种粽子打包成A,B两种包装销售,每包都是40个粽子(包装成本忽略不计),每包的销售价格按其中每个粽子的单价合计.A,B两种包装中分别有m个豆沙粽,m个肉粽,A包装中的豆沙粽数量不超过肉粽的一半.端午节当天统计发现,A,B两种包装的销量分别为(80﹣4m)包,(4m+8)包,A,B两种包装的销售总额为17280元,求m的值.25.(10分)若两条抛物线相交于A(x1,y1),B(x2,y2)两点,并满足y1﹣kx1=y2﹣kx2,其中k为常数,我们不妨把k叫做这两条抛物线的“依赖系数”.(1)若两条抛物线相交于A(﹣2,2),B(﹣4,4)两点,求这两条抛物线的“依赖系数”;(2)若抛物线1:y=2ax2+x+m与抛物线2:y=ax2﹣x﹣n相交于A(x1,y1),B(x2,y2)两点,其中a>0,求抛物线1与抛物线2的“依赖系数”;(3)如图,在(2)的条件下,设抛物线1和2分别与y轴交于C,D两点,AB所在的直线与y轴交于E点,若点A在x轴上,m≠0,DA=DC,抛物线2与x轴的另一个交点为点F,以D为圆心,CD为半径画圆,连接EF,与圆相交于G点,求tan∠ECG.参考答案与解析一、选择题(本大题共10个小题,每小题3分,共30分)1.(3分)如所示4个图形中,是中心对称图形的是()A. B. C. D.【解答】解:A、不是中心对称图形,故此选项不合题意;B、是中心对称图形,故此选项合题意;C、不是中心对称图形,故此选项不符合题意;D、不是中心对称图形,故此选项不合题意.故选:B.2.(3分)抛物线y=(x﹣1)2+3的对称轴是()A.直线x=1 B.直线x=3 C.直线x=﹣1 D.直线x=﹣3【解答】解:抛物线y=(x﹣1)2+3的对称轴是直线x=1.故选:A.3.(3分)在双曲线的任意一支上,y都随x的增大而减小,则k的值可以是()A.﹣2 B.0 C.2 D.﹣1【解答】解:∵双曲线的每个分支上,y都随x的增大而减小,∴k>0,选项中为正数的只有k=2,故选:C.4.(3分)县林业部门考察银杏树苗在一定条件下移植的成活率,所统计的银杏树苗移植成活的相关数据如下表所示:移植的棵数a1003006001000700015000成活的棵数b84279505847633713581成活的频率0.840.930.8420.8470.9050.905根据表中的信息,估计银杏树苗在一定条件下移植成活的概率为(精确到0.1)()A.0.905 B.0.90 C.0.9 D.0.8【解答】解:由表格数据可得,随着样本数量不断增加,这种树苗移植成活的频率稳定在0.9左右,故估计银杏树苗在一定条件下移植成活的概率为0.9.故选:C.5.(3分)如图,在平面直角坐标系中,△OAB的顶点为O(0,0),A(4,3),B(3,0).以点O为位似中心,在第三象限内得到与△OAB的位似比为的位似图形△OCD,则点C的坐标为()A.(﹣1,﹣1) B.(﹣,﹣1) C.(﹣1,﹣) D.(﹣2,﹣1)【解答】解:作AH⊥x轴于H,CG⊥x轴于G,∴△OCG∽△OAH,∴,∵A(4,3),∴OH=4,AH=3,∵△BOA∽△DOC,且OA:OC=3,∴OG=,CG=1,∴C(﹣,﹣1),故选:B.6.(3分)如图,在△ABC中,DE∥AB,且,则的值为()A. B. C. D.【解答】解:∵=,∴=,∵DE∥AB,∴==,故选:A.7.(3分)已知反比例函数的图象上有点A(2,y1),B(1,y2),C(﹣3,y3),则关于y1,y2,y3大小关系正确的是()A.y1>y2>y3 B.y2>y1>y3 C.y1>y3>y2 D.y3>y1>y2【解答】解:函数图象如下:点A、B在y轴右侧且y随x的增大而增大,故y1>y2;点C在y轴的左侧,函数值y为正,故y3>y1>y2,故选:D.8.(3分)如图,△ABC的内切圆⊙O分别与AB,BC,AC相切于点D,E,F,且AD=3,BE=2,CF=4,则△ABC的周长为()A.18 B.17 C.16 D.15【解答】解:∵△ABC的内切圆⊙O分别与AB,BC,AC相切于点D,E,F,∴AD=AF,BD=BE,EC=FC,∵AD=3,BE=2,CF=4,∴AF=3,BD=2,CE=4,∴BC=BE+EC=6,AB=AD+BD=5,AC=AF+FC=7,∴△ABC的周长=BC+AB+AC=18.故选:A.9.(3分)元旦将至,九(1)班全体学生互赠贺卡,共赠贺卡1980张,问九(1)班共有多少名学生?设九(1)班共有x名学生,那么所列方程为()A.x2=1980 B.x(x+1)=1980 C.x(x﹣1)=1980 D.x(x﹣1)=1980【解答】解:根据题意得:每人要赠送(x﹣1)张贺卡,有x个人,∴全班共送:(x﹣1)x=1980,故选:D.10.(3分)如图,在平面直角坐标系中,O为原点,OA=OB=3,点C为平面内一动点,BC=,连接AC,点M是线段AC上的一点,且满足CM:MA=1:2.当线段OM取最大值时,点M的坐标是()A.(,) B.(,) C.(,) D.(,)【解答】解:∵点C为平面内一动点,BD=,∴点C在以点B为圆心,为半径的OB上,在x轴的负半轴上取点D(﹣,0),连接BD,分别过C、M作CF⊥OA,ME⊥OA,垂足为F、E,∵OA=OB=,∴AD=OD+OA=,∴=,∵CM:MA=1:2,∴==,∵∠OAM=∠DAC,∴△OAM∽△DAC,∴==,∴当CD取得最大值时,OM取得最大值,结合图形可知当D,B,C三点共线,且点B在线段DC上时,CD取得最大值,∵OA=OB=,OD=,∴BD==,∴CD=BC+BD=9,∵=,∴OM=6,∵y轴⊥x轴,CF⊥OA,∴∠DOB=∠DFC=90°,∵∠BDO=∠CDF,∴△BDO∽△CDF,∴=,即=,解得CF=,同理可得,△AEM∽△AFC,∴==,即=,解得ME=,∴OE==,∴当线段OM取最大值时,点M的坐标是(,),故选D.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)已知点A(﹣2,b)与B(a,3)点关于原点对称,则a+b=﹣1.【解答】解:∵点A(﹣2,b)与B(a,3)点关于原点对称,∴a=2,b=﹣3,∴a+b=﹣1.故答案为:﹣1.12.(3分)如图,四边形ABCD是圆内接四边形,∠C=120°,求∠A的度数为60度.【解答】解:∵四边形ABCD是圆内接四边形,∴∠C+∠A=180°,∵∠C=120°,∴∠A=180°﹣120°=60°,故答案为:60.13.(3分)已知扇形的半径为2cm,圆心角为120°,则此扇形的弧长是πcm.【解答】解:扇形的弧长==πcm.故答案为.14.(3分)如图,A、B、C、D为一个正多边形的顶点,O为正多边形的中心,若∠ADB=20°,则这个正多边形的边数为九.【解答】解:如图,设正多边形的外接圆为⊙O,连接OA,OB,∵∠ADB=20°,∴∠AOB=2∠ADB=40°,而360°÷40°=9,∴这个正多边形为正九边形,故答案为:九.15.(3分)如图,在网格中,每个小正方形的边长均为1,每个小正方形的顶点称为格点.点A、B、C三点都在格点上,则sin∠ABC=.【解答】解:如图,连接AC,由勾股定理得:AB2=22+42=20,BC2=12+32=10,AC2=12+32=10,则BC2+AC2=AB2,∴∠ACB=90°,∴sin∠ABC===,故答案为:.16.(3分)如图,平行于x轴的直线与函数y=(k1>0,x>0)和y=(k2>0,x>0)的图象分别相交于A,B两点.点A在点B的右侧,C为x轴上的一个动点,若△ABC的面积为4,则k1﹣k2的值为8.【解答】解:设:A、B点的坐标分别是A(,m)、B(,m),则:△ABC的面积=•AB•yA=•(﹣)•m=4,则k1﹣k2=8.故答案为8.三、解答题(本大题共9个小题,第17、18、19题每题6分,第20、21题每题8分,第22、23题每题9分,第24、25题每题10分,共72分)17.(6分)计算:.【解答】解:原式=×+4+﹣1﹣4=.18.(6分)如图,在平面直角坐标系中,一次函数与反比例函数交于A(m,6),B(4,﹣3)两点,与y轴交于点C,连接OA,OB.(1)求反比例函数和一次函数的表达式;(2)求△AOB的面积.【解答】解:(1)∵点B(4,﹣3)在反比例函数和一次函数的图象上,∴.解得k=﹣12,b=3,∴反比例函数的表达式为,一次函数的表达式为.答:反比例函数的表达式为,一次函数的表达式为;(2)∵点A(m,6)在反比例函数的图象上,∴,解得m=﹣2,∴点A的坐标为(﹣2,6),把x=0代入得y=3,∴点C的坐标为(0,3),∴OC=3,∴S△AOB=S△AOC+S△BOC';==9.19.(6分)如图,灯塔B位于港口A的北偏东58°方向,且A,B之间的距离为30km,灯塔C位于灯塔B的正东方向,且B,C之间的距离为10km.一艘轮船从港口A出发,沿正南方向航行到达D处,测得灯塔C在北偏东37°方向上,灯塔B到直线AD的距离为BE.(1)求BE的长;(2)求DE的长(结果精确到0.1).(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【解答】解:(1)由题意得,∠E=90°,∵AB=30km,∠BAE=58°,∴BE=AB⋅sin58°≈30×0.85=25.5(km).(2)∵BC=10km,∴CE=BC+BE=35.5(km),∴DE=CE÷tan37°≈35.5÷0.75≈47.3(km).答:BE的长为25.5km,DE的长为47.3km.20.(8分)为了丰富学生们的课余生活,学校准备开展第二课堂,有四类课程可供选择,分别是“A.书画类、B.文艺类、C.社会实践类、D.体育类”.现随机抽取了七年级部分学生对报名意向进行调查,并根据调查结果绘制了两幅不完整的统计图,请你根据图表信息回答下列问题:(1)本次被抽查的学生共有50名,扇形统计图中“A.书画类”所占扇形的圆心角的度数为72度;(2)请你将条形统计图补全;(3)若该校七年级共有600名学生,请根据上述调查结果估计该校学生选择“C.社会实践类”的学生共有多少名?(4)本次调查中抽中了七(1)班王芳和小颖两名学生,请用列表法或画树状图法求她们选择同一个项目的概率.【解答】解:(1)本次被抽查的学生共有:20÷40%=50(名),扇形统计图中“A.书画类”所占扇形的圆心角的度数为;故答案为:50,72;(2)B类人数是:50﹣10﹣8﹣20=12(人),补全条形统计图如图所示:(3)名,答:估计该校学生选择“C.社会实践类”的学生共有96名;(4)列表如下:ABCDA(A,A)(B,A)(C,A)(D,A)B(A,B)(B,B)(C,B)(D,B)C(A,C)(B,C)(C,C)(D,C)D(A,D)(B,D)(C,D)(D,D)由表格可得:共有16种等可能的结果,其中王芳和小颖两名学生选择同一个项目的结果有4种,∴王芳和小颖两名学生选择同一个项目的概率=.21.(8分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D.(1)求证:△ADC∽△CDB;(2)若AD=2,BD=8,求CD.【解答】解:(1)∵CD⊥AB,∴∠ADC=∠BDC=90°,∠A+∠ACD=90°,∠ACB=90°,∴∠DCB+∠ACD=90°,∴∠A=∠DCB,∴△ADC∽△CDB.(2)∵△ADC∽△CDB,,∴CD2=AD•BD,又∵AD=2,BD=8,∴CD=16,则CD=4.22.(9分)如图,AB,CD为⊙O的直径,C为⊙O上一点,过点C的切线与AB的延长线交于点P,∠ABC=2∠BCP,点E是的中点,弦CE,BD相交于点F.(1)求∠OCB的度数;(2)若EF=3,求⊙O直径的长.【解答】解:(1)∵PC与⊙O相切于点C,∴OC⊥PC,∴∠OCB+∠BCP=90°,∵OB=OC,∴∠OCB=∠OBC,∵∠ABC=2∠BCP,∴∠OCB=2∠BCP,∴3∠BCP=90°,∴∠BCP=30°,∴∠OCB=60°.(2)连接DE,∵CD是直径,∴∠DEC=90°,∵点E是的中点,∴,∴∠DCE=∠FDE=∠ECB=∠DCB=30°,∵∠E=90°,EF=3,∠FDE=30°,∴DE=FE=3,∵∠E=90°,∠DCE=30°,∴,∴⊙O的直径的长为.23.(9分)为纪念爱国诗人屈原,人们有了端午节吃粽子的习俗.下表列出了小欢妈妈、小乐妈妈端午节前在超市购买粽子的数量(单位:个)和付款金额(单位:元).豆沙粽数量肉粽数量付款金额小欢妈妈2030270小乐妈妈3020230(1)求豆沙粽和肉粽的单价;(2)为进一步提升粽子的销量,超市将两种粽子打包成A,B两种包装销售,每包都是40个粽子(包装成本忽略不计),每包的销售价格按其中每个粽子的单价合计.A,B两种包装中分别有m个豆沙粽,m个肉粽,A包装中的豆沙粽数量不超过肉粽的一半.端午节当天统计发现,A,B两种包装的销量分别为(80﹣4m)包,(4m+8)包,A,B两种包装的销售总额为17280元,求m的值.【解答】解:(1)设豆沙棕的单价为a元,肉粽的单价为b元,由题意可得,,解得:答:豆沙粽的单价为3元,肉粽的单价为7元;(2)由题意可得,[3m+7(40﹣m)]×(80﹣4m)+[3(40﹣m)+7m]×(4m+8)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高处作业材料运输安全方案
- 地下管网电缆铺设方案
- 2024年度租赁合同租金支付方式协议
- 加气站消防安全工作总结与建议
- 冀教版四年级上册数学第六单元 认识更大的数 测试卷附完整答案【夺冠】
- 冀教版四年级上册数学第四单元 线和角 测试卷及参考答案【培优b卷】
- 郑州大学《化工热力学实验》2022-2023学年第一学期期末试卷
- 郑州大学《固体废物处理与处置》2022-2023学年第一学期期末试卷
- 人教版四年级上册数学第四单元《三位数乘两位数》测试卷附参考答案(夺分金卷)
- 2024年度电气预埋安装工程知识产权保护合同
- 算法及其描述-高中信息技术粤教版(2019)必修1
- 圆的周长习题(有答案)
- T-CACM 1397-2022 儿童青少年近视防控中医适宜技术临床实践指南
- 高一物理必修1物理试卷及标准答案
- 近效期药品登记表
- 一个冬天的童话 遇罗锦
- YY 0569-2005生物安全柜
- GB/T 13610-2020天然气的组成分析气相色谱法
- 心肌梗死后综合征
- 《彩虹》教案 省赛一等奖
- FLUENT6.3使用说明及例题
评论
0/150
提交评论