2022年云南省昆明市明德中学高二数学文期末试卷含解析_第1页
2022年云南省昆明市明德中学高二数学文期末试卷含解析_第2页
2022年云南省昆明市明德中学高二数学文期末试卷含解析_第3页
2022年云南省昆明市明德中学高二数学文期末试卷含解析_第4页
2022年云南省昆明市明德中学高二数学文期末试卷含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年云南省昆明市明德中学高二数学文期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.复数(i是虚数单位)在复平面上对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限参考答案:D2.已知不等式的解集为,则不等式

的解集为

(A)

(B)

(C)

(D)参考答案:A略3.掷两次骰子得到的点数分别为m和n,记向量=(m,n)与向量=(1,﹣1)的夹角为θ,则θ∈(0,]的概率是()A. B. C. D.参考答案:C【考点】几何概型.【分析】由已知掷两次骰子得到的点数分别为m和n,记为(m,n),共有36种可能,而由数量积则θ∈(0,]的,n范围是m﹣n≥0并且m+n≠0,由几何概型公式得到所求.【解答】解:解:连掷两次骰子得到的点数分别为m和n,记(m,n)有:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)(2,1),(2,2),(2,3),(2,4),(2,5),(2,6)(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共36个基本事件若θ∈(0,],则m≥n,则满足条件的(m,n)有:(1,1),(2,1),(2,2),(3,1),(3,2),(3,3)(4,1),(4,2),(4,3),(4,4),(5,1),(5,2)(5,3),(5,4),(5,5),(6,1),(6,2),(6,3)(6,4),(6,5),(6,6),共21个基本事件则P=;故选C.【点评】本题主要考查古典概型概率求法,用到了用两个向量的数量积表示两个向量的夹角;解答本题的关键是明确概率模型,分别求出所有事件以及满足条件的事件个数,利用公式解答.4.已知a∈R,命题“?x∈(0,+∞),等式lnx=a成立”的否定形式是()A.?x∈(0,+∞),等式lnx=a不成立B.?x∈(﹣∞,0),等式lnx=a不成立C.?x0∈(0,+∞),等式lnx0=a不成立D.?x0∈(﹣∞,0),等式lnx0=a不成立参考答案:C【考点】命题的否定.【分析】根据全称命题的否定是特称命题进行求解判断.【解答】解:命题是全称命题,则命题的否定是:?x0∈(0,+∞),等式lnx0=a不成立,故选:C【点评】本题主要考查含有量词的命题的否定,比较基础.5.对两个变量y和x进行回归分析,得到一组样本数据:(x1,y1),(x2,y2),…,(xn,yn),则下列说法中不正确的是()A.由样本数据得到的回归方程为=x+必过样本点的中心(,)B.残差平方和越小的模型,拟合的效果越好C.用相关指数R2来刻画回归效果,R2的值越小,说明模型的拟合效果越好D.若变量y和x之间的相关系数r=-0.9362,则变量y和x之间具有线性相关关系参考答案:C[解析]R2的值越大,说明残差平方和越小,也就是说模型的拟合效果越好,故选C.6.为研究两个变量之间的关系,选择了4个不同的模型进行拟合,计算得它们的相关指数R2如下,其中拟合效果最好的模型是()A.相关指数R2为0.96 B.相关指数R2为0.75C.相关指数R2为0.52 D.相关指数R2为0.34参考答案:A【考点】BS:相关系数.【分析】根据两个变量y与x的回归模型中,相关指数R的绝对值越接近1,其拟合效果越好,由此得出正确的答案.【解答】解:根据两个变量y与x的回归模型中,相关指数R的绝对值越接近1,其拟合效果越好,选项A中相关指数R最接近1,其模拟效果最好;故选:A.7.函数的最大值为()A.e﹣1B.eC.e2D.参考答案:A

考点:函数在某点取得极值的条件.专题:计算题.分析:先找出导数值等于0的点,再确定在此点的左侧及右侧导数值的符号,确定此点是函数的极大值点还是极小值点,从而求出极值.解答:解:令,当x>e时,y′<0;当x<e时,y′>0,,在定义域内只有一个极值,所以,故答案选A.点评:本题考查求函数极值的方法及函数在某个点取得极值的条件.8.已知,则的范围(

)A.

B.

C.

D.

参考答案:C9.已知Sn是等差数列{an}的前n项和,公差为d,且S2015>S2016>S2014,下列五个命题:①d>0②S4029>0③S4030<0④数列{Sn}中的最大项为S4029,其中正确命题的个数是()A.1 B.2 C.3 D.4参考答案:A【考点】85:等差数列的前n项和.【分析】推导出等差数列的前2015项和最大,a1>0,d<0,且前2015项为正数,从第2016项开始为负数,由S2016>S2014,得S2016﹣S2014=a2016+a2015>0,由此求出S4029>0,S4030>0.【解答】解:∵Sn是等差数列{an}的前n项和,公差为d,且S2015>S2016>S2014,∴等差数列的前2015项和最大,∴a1>0,d<0,且前2015项为正数,从第2016项开始为负数,故①和④错误;再由S2016>S2014,得S2016﹣S2014=a2016+a2015>0,S4029=(a1+a4029)=×2a2015>0,故②正确;S4030==2015(a2015+a2016)>0,故③错误.故选:A.10.复数的共轭复数是(

)A.

B.

C.

D.参考答案: 二、填空题:本大题共7小题,每小题4分,共28分11.过点(1,2)且在两坐标轴上的截距相等的直线的方程

______。参考答案:或12.函数y=2x3-2x2在区间[-1,2]上的最大值是________.参考答案:略13.已知直线l1:ax+y+2=0,l2:3x﹣y﹣1=0,若l1∥l2则a=.参考答案:﹣3【考点】直线的一般式方程与直线的平行关系.【分析】由﹣a﹣3=0,解得a,再验证即可得出.【解答】解:由﹣a﹣3=0,解得a=﹣3.经过验证满足l1∥l2.故答案为:﹣3.14.已知是非零向量,且夹角为,则向量的模为

.参考答案:15.已知,并且成等差数列,则的最小值为_

__.参考答案:1616.设a,b,a+2b=3,则最小值是

;参考答案:1+17.在复平面内,复数(为虚数单位)的共轭复数对应的点位于第

象限.参考答案:四(或者4,Ⅳ)三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(14分)用边长60cm的正方形硬纸片ABCD,切去如图所示的阴影部分,即四个全等的等腰直角三角形,再沿虚线折起,使A,B,C,D四点重合于右图中点P,正好做成一个正四棱柱状的包装盒。被切去的一等腰直角三角形斜边两端点E,F在AB上。设。(1)用表示包装盒的高h;(2)求出包装盒的容积V关于的函数表达式,并指出的范围;(3)为何值时,盒子容积最大?求出此时盒子的底边与高长之比.参考答案:解:(1)

(3分)

(2),(8分)

(9分)

(3),(11分)当为增函数;当为减函数。所以当时,V有极大值,即容积有最大值。(13分)此时盒子的底边与高长之比为。(14分)略19.已知等比数列{an}的前n项和为Sn,若S1,2S2,3S3成等差数列,且S4=.(1)求数列{an}的通项公式;(2)求证:Sn<.参考答案:【考点】数列的求和;等比数列的通项公式.【分析】(1)根据S1,2S2,3S3成等差数列建立等式,求出q的值,然后根据等比数列的求和公式建立等式,可求出的首项,从而求出数列的通项;(2)运用等比数列的求和公式和不等式的性质,即可得证.【解答】解:(1)设等比数列{an}的公比为q,∵S1,2S2,3S3成等差数列∴4S2=S1+3S3,即4(a1+a2)=a1+3(a1+a2+a3),∴a2=3a3,即q=,又S4=,∴=,解得a1=1,∴an=()n﹣1;(2)证明:Sn==(1﹣)<,即有Sn<.20.已知函数(1)若的解集是,求实数a,b的值.(2)若且恒成立,求实数a的取值范围.

参考答案:解:(1)由题意得:且是方程的两个根.………………3分所以,,解得

……………7分⑵由,而恒成立,即:恒成立.

……………8分时,成立;………10分所以

,解得,

………13分此为所求的的取值范围

………………14分

21.在四棱锥P-ABCD中,侧面PCD⊥底面ABCD,PD⊥CD,底面ABCD是直角梯形,AB∥CD,∠ADC=90°,AB=AD=PD=1,若E为PC的中点,且BE与平面PDC所成的角的正弦值为,(1)求CD的长(2)求证平面PBD(3)设Q为侧棱PC上一点,=λ,试确定λ的值,使得二面角Q-BD-P的大小为45°.参考答案:略22.某种出口产品的关税税率t,市场价格x(单位:千元)与市场供应量p(单位:万件)之间近似满足关系式:p=,其中k,b均为常数.当关税税率为75%时,若市场价格为5千元,则市场供应量均为1万件;若市场价格为7千元,则市场供应量约为2万件.(1)试确定k、b的值;(2)市场需求量q(单位:万件)与市场价格x近似满足关系式:q=2﹣x.p=q时,市场价格称为市场平衡价格.当市场平衡价格不超过4千元时,试确定关税税率的最大值.参考答案:【考点】5D:函数模型的选择与应用.【分析】(1)根据“关系式:p=2(1﹣kt)(x﹣b)2,及市场价格为5千元,则市场供应量均为1万件;市场价格为7千元,则市场供应量约为2万件”,可得到从而求得结果.(2)当p

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论