版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
UnitedStatesGovernmentAccountabilityOfficeReporttoCongressionalAddressees
March2023
GAO-23-105583
TECHNOLOGYASSESSMENT
Utility-ScaleEnergyStorage
TechnologiesandChallengesforanEvolvingGrid
Thecoverimagedisplaysimagesofagas-poweredturbineforelectricitygeneration,andpumpedhydroelectric,flywheel,andbatteryenergystoragetechnologies.
Coversources:GAO(illustration);contributor_aerial/Regan/malp/filins/(photoslefttoright).|GAO-23-105583
Highlightsof
GAO-23-105583,
areporttocongressionaladdressees
March2023
WhyGAOdidthisstudy
TheU.S.electricitygridconnectsmorethan11,000powerplantswitharound158millionresidential,commercial,andotherconsumers.Energystoragetechnologieshavethepotentialtoenableseveralimprovementstothegrid,suchasreducingcostsandimprovingreliability.Theycouldalsoenablethegrowthofsolarandwindenergygeneration.
GAOconductedatechnologyassessmenton(1)technologiesthatcouldbeusedtocaptureenergyforlaterusewithintheelectricitygrid,
(2)challengesthatcouldimpactenergystoragetechnologiesandtheiruseonthegrid,and(3)policyoptionsthatcouldhelpaddressenergystoragechallenges.
Toaddresstheseobjectives,GAOreviewedagencydocumentsandotherliterature;interviewedgovernment,industry,academic,andpowercompanyrepresentatives;conductedsitevisits;andconvenedavirtualmeetingofexpertsincollaborationwiththeNationalAcademiesofSciences,Engineering,andMedicine.GAOisidentifyingpolicyoptionsinthisreport(seep.2).
View
GAO-23-105583.
Formoreinformation,contactBrianBothwellat(202)512-6888,
bothwellb@.
TECHNOLOGYASSESSMENT
Utility-ScaleEnergyStorage
TechnologiesandChallengesforanEvolvingGrid
WhatGAOfound
Technologiestostoreenergyattheutility-scalecouldhelpimprovegridreliability,reducecosts,andpromotetheincreasedadoptionofvariablerenewableenergysourcessuchassolarandwind.Energystoragetechnologyusehasincreasedalongwithsolarandwindenergy.SeveralstoragetechnologiesareinuseontheU.S.grid,includingpumpedhydroelectricstorage,batteries,compressedair,andflywheels(seefigure).Pumpedhydroelectricandcompressedairenergystoragecanbeusedtostoreexcessenergyforapplicationsrequiring10ormorehoursofstorage.
Lithium-ionbatteriesandflywheelsareusedforshorter-durationapplicationssuchaskeepingthegridstablebyquicklyabsorbingordischargingelectricitytomatchdemand.Flowbatteriesrepresentasmallfractionoftotalenergystoragecapacityandcouldbeusedforapplicationsrequiring10ormorehoursofstorage.Metal-airbatteriesarebeingevaluatedforapplicationsrequiring10ormorehoursofstorage.
PumpedHydroelectric(left)andLithium-IonBattery(right)EnergyStorageTechnologies
Energystoragetechnologiesfacemultiplechallenges,including:
Planning.Planningisneededtointegratestoragetechnologieswiththeexistinggrid.However,accurateprojectionsofeachtechnology’scostsandbenefitscouldbedifficulttoquantify.Further,refinementofcosts,benefits,andotherdataareneededtoinformtheplanningprocess.
Regulation.Rulesandregulationsvaryacrossregionsandstates,whichforcesenergystorageprojectdeveloperstonavigateapatchworkofpotentialmarkets.Developersthatwanttodeploystorageacrossmultiplemarketsmayneedtoconductseparateanalysestodetermineeachregion’sregulatoryoutlookandprofitpotential.
Standardization.Codesandstandardsmayneedrevisingandmustkeeppacewithmaturingtechnologiestominimizepublicsafetyandwelfarerisks.However,thetechnology’sevolutionanddeploymentisoutpacingcodesandstandardsdevelopment.Asaresult,entitiesseekingtodeploynewtechnologiesmayfacechallengesapplyingexistingcodesandstandardstonewtechnologies.
Valuation.Realizingthepotentialofenergystoragetechnologiesmaydependontheabilitytovalueinvestments.Forexample,profitpotentialcanvarybecauseregionsandstatesvaluestoragedifferently,reflectinglocalmarketrulesandregulations.
UnitedStatesGovernmentAccountabilityOffice
UnitedStatesGovernmentAccountabilityOffice
GAOdevelopedsixhigh-levelpolicyoptionsinresponsetothesechallenges.Thesepolicyoptionsareprovidedtoinformpolicymakersofpotentialactionstoaddressthepolicychallengesidentifiedinthistechnologyassessment.Theyidentifypossibleactionsbypolicymakers,whichincludeCongress,federalagencies,stateandlocalgovernments,academicandresearchinstitutions,andindustry.Thestatusquooptionillustratesascenarioinwhichpolicymakersdonotintervenewithongoingefforts.
PolicyOptionstoAddressChallengestoUtility-ScaleEnergyStorage
Policyoptionsandimplementationapproaches
Opportunities
Considerations
Statusquo(reportp.
48
)
Policymakerscouldmaintainthestatusquothrough:
Taxcreditsandfunding
Researchanddevelopment
Previousplansandprogramsbystateswouldcontinue,includingactionsforenergystorage.
Thefederalgovernmenthasvariousnationalcapabilitiestosupportenergystoragetechnologyincentivesanddemonstration.
DOEsupportforstorageresearchanddevelopmentwouldcontinue.
Somepolicymakersmaylacksufficientinformationtomakedecisionsonevolvingstoragecapabilities.
Storagedevelopment,deployment,andusecouldbeleftdependentonforcesoutsidepolicymakers’control.
Integration(reportp.
50
)
Policymakerscouldincludecleargoalsandnextstepsinplanstohelpintegratestorage,by:
Establishingroadmaps,basedonstoragecostsandbenefits
Assessingstorageinplans
Storageplanningcouldhelppolicymakersidentifyandremovebarrierstoenergystoragedeployment.
Planscouldincreaseinvestors’confidenceandhelpthemdeterminestorageinvestments.
Plansthatseektoalterconventionalgridplanningcouldbedifficulttoexecute.
Stakeholdershavesetdifferentgoalsforlow-carbonelectricgeneration.
Planningdependsonfactorssuchaslocationsuitability;noteverytechnologyissuitedforeverylocation.
Regulation(reportp.
52
)
Policymakerscouldreviseandenactrulesandrequirementsforhowstorageisdefined,used,orownedby:
Identifyingmarketbarriers
Establishingtargetsormandates
Modernizingownershipmodels
Couldpromoteenergystoragetechnologiesbyimprovinggridefficiencywhilereducingcostsforallcustomers.
Couldhelplowercostsandreducethetimelineforinterconnection.
Couldacceleratepermitapprovaltimelines.
Regulationsdifferacrossstates,whichcouldmakefindingtherightregulatorymodeltoachieveenergygoalsachallenge.
Integratingnewtechnologieswithconventionalgridplanningcanbechallenging.
Changestorulesandregulationscouldexcludecertaintechnologies.
Standardization(reportp.
54
)Policymakerscouldupdateorcreatenewcodesandstandardsandprovideeducationonstoragesafetyrisks.
Couldhelpstakeholdersoperatestoragesystemsmoresafely.
Standardsplacedintoregulations
couldhelpaddressstorageperformancerequirements.
Codesandstandardstaketimetodevelopandcouldbeoutdatedifnotadoptedinatimelymanner.
Standardsmaybeambiguous,whichcouldmakeitdifficulttodesignstoragesystems.
Supportmanufacturingandadoption(reportp.
56
)Policymakerscouldsupportactionstohelpenergystoragemanufacturingandadoptionchallengesby:
Enactingbatteryreuseandrecyclingpolicies
Conductingoutreach
Targetingactivitiestosupportstoragedevelopmentanddeployment
Reuseandrecyclingpoliciescouldincreasetherecoveryofproductsandmaterials.
Stakeholderoutreachandinformationalprogramscouldhelpovercomeawarenessandfamiliaritychallenges.
Federalandstatefinancialsupportforlonger-durationenergystoragedevelopmentanddemonstrationcouldbeimportantinafutureelectricitysystempoweredbywindandsolargeneration.
Incentivesandmotivationtoinvestinnewrecyclingapplicationsislimited.
Fundingmayfluctuateyeartoyearorfavorshort-termprojects.
Developmentofnewsystemscouldbedifficultbecauseofengineeringandeconomicuncertainty,particularlyforlonger-durationstorage.
Low-cost,flexiblenaturalgasgenerationcouldmakeitmoredifficultfornewpumpedhydroelectricfacilitiestocompete.
Provideincentives(reportp.
58
)Policymakerscouldcreatemechanismstoincentivizestoragedeployment,by:
Providingincentives,suchasloanguaranteesortaxcredits
Consideringpoliciestoencouragethecaptureofmultiplerevenuestreams
Financialincentivescouldhelpdevelopersandcompaniesdevelopstoragetechnologies.
Technologieswithlongerdurationsmaybenefitfrompoliciesthathelpindustrytocapturetheirfullvalue.
Incentivescouldleadtounintendedoutcomesforgovernmentsordevelopers,andsomestakeholdersmaynotbelievetheyarenecessary.
Technologyvaluevariesbyregion,whichmayaffectstorageincentives,valuation,andrevenuestreams.
Environmentalandsocialcostsandbenefitscouldbedifficulttoquantify.
Source:GAO.|GAO-23-105583
ThisisaworkoftheU.S.governmentandisnotsubjecttocopyrightprotectionintheUnitedStates.ThepublishedproductmaybereproducedanddistributedinitsentiretywithoutfurtherpermissionfromGAO.However,becausethisworkmaycontaincopyrightedimagesorothermaterial,permissionfromthecopyrightholdermaybenecessaryifyouwishtoreproducethismaterialseparately.
Utility-ScaleEnergyStorageGAO-23-105583
PAGE\*roman
iii
TableofContents
Introduction 1
Background 3
Howdoesthegridwork? 3
Whatisenergystorage? 9
Whyenergystorage? 10
Historyofenergystoragetechnologies 12
Factorsaffectingeconomicviability 13
Legalandregulatoryconsiderations 15
Utility-ScaleEnergyStorageTechnologies 18
Multiplestoragetechnologiesareavailable 18
Differentenergystoragedurationshavedifferentusesonthegrid 35
SeveralChallengesMayHinderEnergyStorageTechnologyDevelopmentandUse 39
Planningforstoragetechnologies 39
Challengingregulatoryenvironment 42
Existingcodesandstandardsdonotfullyaddressenergystoragetechnologies 43
Crosscuttingchallenges 44
Valuingenergystorage 46
PolicyOptionstoAddressEnergyStorageTechnologyChallenges 48
Statusquo 48
Integratingstoragetechnologies 50
Revisingandenactingrulesandrequirements 52
Updatingorcreatingcodesandstandards 54
Addressingcrosscuttingchallenges 56
Incentivizingenergystorage 58
AgencyandExpertComments 61
AppendixI:Objectives,Scope,andMethodology 63
AppendixII:ExpertParticipation 68
AppendixIII:GAOContactsandStaffAcknowledgments 69
Figures
Figure1:Theelectricitygrid 4
Figure2:Exampledepictingelectricitystystemload
5
Figure3:U.S.electricpowermarketsandinterconnections 7
Figure4:Independentsystemopertorsandregionaltransmissionorganizations
8
Figure5:Selectedenergystoragetechnologyperformancecharacteristics 9
Figure6:Examplesofenergystorageapplicationsontheelectricitygrid
11
Figure7:Hypotheticalexampleofcurtailedwindenergyonagrid
usingsimulateddata 11
Figure8:Totalinstalledcosts(energycapacity)oflarge-scalebatterystorage
systemsfrom2015-2019
13
Figure9:Percentofutility-scaleenergystorageinoperationbytechnologytype 19
Figure10:Simplifiedinterconnectionstudyprocess
41
Figure11:Examplesofstateenergystorageefforts 51
Abbreviations
DOE
DepartmentofEnergy
EIA
EnergyInformationAdministration
FERC
FederalEnergyRegulatoryCommission
ISO
IndependentSystemOperator
MW
Megawatt
NationalAcademies
NationalAcademiesofSciences,Engineering,andMedicine
NERC
NorthAmericanElectricReliabilityCorporation
RTO
RegionalTransmissionOrganization
Utility-ScaleEnergyStorageGAO-18-3071
441GSt.N.W.
Washington,DC20548
March30,2023CongressionalAddressees
Energystoragetechnologies—suchasbatteries,flywheels,compressedair,andpumpedhydroelectricpower—haveseveralpotentialbenefits.
1
Forexample,theabilitytostoreenergy—especiallyforseveralhoursorlonger—couldreducecosts,increasetheelectricitygrid’sreliability,andimproveitsabilitytorecoverfromdisruptions.Storagetechnologiescouldalsopromoteincreasedadoptionofrenewableenergysourcessuchassolarandwindbycapturingtheirexcesspowerandreturningittothegridwhenthesesourcesarelessavailable.However,energystorage,alongwithrenewableenergygeneration,mayrequirechangesinthewaythepowersystemisorganizedandoperated.
2
Thefederalgovernmenthastakenseveralstepstoexploreorpromoteenergystoragetechnologies.Forexample,in2021theInfrastructureInvestmentandJobsActappropriated
$505milliontotheDepartmentofEnergy(DOE)forenergystoragedemonstrationprojectsforfiscalyears2022to2025.
3
TheactalsorequiredDOEtostudycodesandstandardsforenergystoragesystemsandestablishagrantprogramtoenhanceU.S.batterymanufacturing.Further,theInflationReductionActof2022createdandexpandedtaxcreditsforinvestmentinenergystoragetechnology.
4
Withintheexecutivebranch,theFederalEnergyRegulatoryCommission(FERC)issuedordersin2018and2019toremovebarrierstomarketparticipationforenergystoragetechnologies.
WepreparedthisreportundertheauthorityoftheComptrollerGeneraltoassistCongresswithitsoversightresponsibilities,inlightofbroadcongressionalinterestinutility-scaleenergystoragetechnologies.
5
Weexamined(1)technologiesthatcouldbeusedtocaptureenergyforlaterusewithintheelectricitygrid,(2)challengesthatcouldimpactenergystoragetechnologies
1
Forthepurposesofthisreport,wediscusspumpedhydroelectricstorage;lithiumion,andotherbatterytechnologies;compressedairenergystorage;andflywheelsasexamplesofenergystoragetechnologies.Wedonotdiscussconcentratedsolarthermalenergyforthisreport,becauseitcannottakeenergyfromthegrid,orhydrogen,becauseitwasnotsufficientlywellestablishedduringourreview.
2
Energystoragetechnologiesaresystemsthatarecapableofreceivingelectricenergyfromthegridandstoringitforlaterinjectionofelectricenergybacktothegrid.
3
Pub.L.No.117-58,135Stat.429(2021).
4
Pub.L.No.117-169,§13102,136Stat.1818,1913-21.
5
Forthepurposesofthisreport,wearedefiningutility-scaleassystemsthathaveatleast1megawatt(MW)ofoutput,arelocatedinacentralizedlocation,andareontheutility’ssideofthemeter.
Utility-ScaleEnergyStorageGAO-23-105583
PAGE
10
andtheiruseonthegrid,and(3)policyoptionsthatcouldhelpaddressenergystoragechallenges.
Wefocusedthistechnologyassessmentonutility-scaleenergystoragesystems,selectingpumpedhydroelectricstorage,batteries,compressedairenergystorage,andflywheelsasexampletechnologies.Wedonotdiscussconcentratedsolarthermalenergyinthisreportbecauseitcannottakeenergyfromthegrid,andhydrogenbecauseitwasnotsufficientlyestablishedduringourreview.Wereviewedagencydocumentsandotherliterature;interviewedagencyofficials,expertsandstakeholdersfromindustry,andpowercompanies,amongothers;conductedsitevisits;andheldavirtualmeetingofexperts.Themeetingincludedanon-generalizablesampleof15expertsselectedbasedontheirtechnical,economic,regulatory,operational,orpolicyexpertise.SeeappendixIforadetaileddescriptionofourobjectives,scope,andmethodology.
WeconductedourworkfromDecember2021toMarch2023inaccordancewithallsectionsofGAO’sQualityAssuranceFrameworkthatarerelevanttotechnologyassessments.Theframeworkrequiresthatweplanandperformtheengagementtoobtainsufficientandappropriateevidencetomeetourstatedobjectivesandtodiscussanylimitationstoourwork.Webelievethattheinformationanddataobtained,andtheanalysisconducted,provideareasonablebasisforanyfindingsandconclusionsinthisproduct.
Background
Howdoesthegridwork?
Theelectricitygridisamassivefeatofengineering,whichoneauthorcalled“themostcomplexmachineevermade.”
6
IntheU.S.,itconnectsmorethan11,000powerplantswithover158millionresidential,commercial,andothercustomersviamillionsofpowerlines.Ithasfourdistinctfunctions:generation,electricitytransmission,distribution,andgridoperations.
7
Seefigure1
6
Schewe,PhillipF.,Thegrid:ajourneythroughtheheartofourelectrifiedworld(Washington,DC:JosephHenryPress,2007).
forarepresentationofthegrid.Powerplantsgenerateelectricitybyconvertingotherformsofenergy,suchaschemicalenergyfromfuel,mechanicalenergyfromwindorwater,andnuclearenergy.Oncegenerated,electricityisauniformresourcethatisinterchangeablewithelectricityfromanyothersource.Thegridcarriesthiselectricityfirstthroughhigh-voltage,high-capacitytransmissionlines.Theelectricityisthentransformedtoalowervoltageandsentthroughthelocaldistributionlinestohomesandbusinesses.
7
Generationfacilitiesproduceelectricity.Transmissionlinesmoveelectricitybetweenpowerplantsandpointswhereitisdeliveredtocustomersorotherelectricsystems.Distributiondeliversenergytoretailcustomers.
Gridoperatorsmustensurethatelectricitysupplyconstantlymatchespowerdemand.Thisbalancingactrequiresthemtoforecastelectricitydemandandscheduleandoperatepowerplantstomeetdemand,whichvariesbytimeofdayandyear,sinceitisdifficulttoeconomicallystorelargequantitiesofelectricity.Assuch,electricitymustbeproducedtheinstantitisneededandused.Todothis,gridoperatorssendminute-by-minutesignalstopowerplantstoadjust
output.Onekeypatterntheymustfollowistheriseinconsumerelectricitydemandthroughouttheday,inmanyareas,reachingpeakdemandinthelateafternoonorearlyevening.Typically,gridoperatorsuseasteadyflowofelectricityfrombaseloadpowerplants,whichruncontinuouslyandaretheleastexpensivetooperate.Asdemandincreasestoitspeak,operatorsprogressivelyincreasetheelectricitysuppliedbypeakerplants—electricitygeneratorsreservedfor
operationduringthehoursofhighestdaily,weekly,orseasonalelectricityloads—andothergeneratorsthataremoreexpensivetooperatebutcanbequicklybroughtonline(seefig.2).
aPeakinggenerationiselectricityreservedforoperatingduringthehoursofhighestdaily,weekly,orseasonalelectricityloads.
bIntermediateloadgenerationisnormallyoperatedonadailycycletoserveon-peakloadsduringtheday,butnotoff-peakloadsduringnightsandweekends.
cBaseloadgenerationservestheminimumlevelofelectricpowerdemandofaregion,orcustomerrequiredoveragivenperiodoftimeatasteadyrate.
dRenewablesgenerationrepresentsvariablegenerationprimarilyfromwindorsolarsources,whosepeakgenerationdoesnotnecessarilycoincidewithelectricitysystemperiodsofpeakdemand.
Severalfactorshavemadethetaskofmatchingelectricitysupplyanddemandevenmorecomplex.Variableelectricitysourcessuchaswindandsolarpoweraresupplyinganincreasingshareofelectricity,buttheiroutputvarieswiththeweatheranddoesnotalwaysmatchdemand.Further,theincreasinguseofvariableenergyresources,interactionofsuchenergysourceswithtraditionalgenerationsources,andchangingroleofelectricitycustomershaveincreasedthe
complexityofmatchingelectricitysupplywithdemandatalltimes.
Gridoperatorsconductplanningactivitiestodeterminegridinfrastructureadequacy,identifycapacityneeds,andevaluatethecostandeffectivenessofpotentialsolutionstoaddresstheseneeds.Utilitiesdealwithuncertaintypartlybyproducingarangeofforecastsbasedondemographicandeconomicfactors,andbymaintainingexcessgenerationcapacity,knownasreserves.
Additionally,utilitiesusemodelstohelpchoosetheleast-costcombinationofelectricitygeneratingresourcestomeetdemandinordertoreducecosts.Stateregulatorsapproveofutilityinvestmentsbeforefacilitiesarebuiltorwhenutilitiesseektorecovercostsintheratesconsumersarecharged.Further,somestatesuseintegratedresourceplanningprocessestodeterminewhichfacilitiesshouldbebuilt.Thisprocessisintendedtomeetfuturepowerdemandbyidentifyingtheneedforgeneratingcapacityanddeterminingthebestresourcemixtomeetsystemneedsatthelowestcosts.
Theelectricitygridinthelower48statesismadeupofthreemainparts,knownasinterconnections,whichoperatelargelyindependentofeachother,withlimited
powertransfersbetweenthem.
8
Seefigure3formapsofinterconnectionsandU.S.electricpowermarkets.Further,howpowerisboughtandsoldvariesbyregionandthereisamixofregulatorymarketenvironments.Someutilitiesmayoperateunderamixofmarketenvironments.Further,someutilitiesmaybeinvestor-ownedandregulatedbypublicpolicy,whileothersmaybepubliclyownedandregulatedthroughtheirownership,inadditiontomanystateandfederallaws.U.S.utilitiesoperateintraditionallyregulatedandderegulatedmarkets.
Traditionallyregulatedmarkets.Intraditionallyregulatedmarkets,utilitiesaretypicallysolelyresponsiblefor
8
TheWestern,Eastern,andElectricReliabilityCouncilofTexas(ERCOT)interconnectionsconsistofbalancingauthoritieswhichcanbeindependentsystemoperators,regionaltransmissionorganizations,orindividualpowercompanies.
Balancingauthoritieshavebalancingresponsibilitiesforaspecificportionofthepowersystemandensurethatpowersystemsupplyanddemandarebalanced,whichisrequiredtomaintainsafeandreliableoperationofthepowersystem.
generating,transmitting,anddistributingelectricitytotheircustomers.
Deregulatedmarkets.Inderegulatedmarkets,utilitiesthatserveretailcustomerscannotownpowerplants;theyareonlyresponsiblefordeliveringelectricitytocustomers,andforcustomerbilling.
9
Insuchmarkets,electricitygeneratingentitiestypicallyselltheelectricitytheygeneratethroughcompetitivepowermarkets.Independentsystemoperators(ISO)andregionaltransmissionorganizations(RTO),formedinresponsetoFERCorders,aregroupsthatcoordinate,control,andmonitortheelectricgridintheseareas.Seefigure4foramapofISOsandRTOs.
9
Transmissionsystemsarelinesandequipmentthatmoveelectricityfromwhereitissuppliedtowhereitisdeliveredtocustomersorothersystems.
aPJMinterconnectionandSouthwestPowerPoolareRegionalTransmissionOrganizations.
Responsibilityforpowerindustryregulationisdividedamongstatesandthefederalgovernment.Forexample,theFederalPowerActgivesFERCtheresponsibilitytoregulatethetransmissionandwholesalesaleofelectricityininterstatecommerce,andtoensurethattheratesforsuchtransmissionandwholesalesalesarejustandreasonable.
10
Stateentities,suchaspublicutilitycommissions,regulateutilitymanagement,operations,andelectricityratestructures.Insomeregions,ISO’sandRTOsmanageelectricitytransmissionandwholesaleelectricitymarkets.AccordingtotheNational
10
16U.S.C.§§824,824d.
AcademiesofSciences,Engineering,andMedicine(NationalAcademies),thisdividedresponsibilitycontributestomakingitdifficulttomakegeneralizationsaboutmanyaspectsoftheU.S.electricitysystem.
AccordingtoaNationalAcademiesconsensusstudy,itcanbechallengingtodeterminewhoisinchargeofplanning,developing,andensuringfuturepowersystemintegrity.
11
IntheU.S.,nosingleplannerordesignerisresponsiblefortheelectricitysystem.Thegridhasbeendevelopedinanincrementalandpiecemealprocessdrivenbythesometimes
11
NationalAcademiesofSciences,Engineering,andMedicine,TheFutureofElectricPowerintheUnitedStates(Washington,D.C.:NationalAcademiesPress.2021).
divergentinterestsoffederal,state,regional,andlocalauthoritiesoperatingdifferentlyintheirrespectiveareas.Thisincrementalprocesshasshapedhowthegridhasevolved,andaccordingtothisNationalAcademiesstudy,howitwillcontinuetoevolve.
Whatisenergystorage?
Typesofenergystoragetechnologiesincludepumpedhydroelectricstorage,lithium-ionandotherbatterytechnologies,compressedairenergystorage,andflywheels.
12
Thesetechnologieshavedifferentperformancecharacteristicsthatmaymakethemmoresuitableforsomegridservicesthanothers.Forexample,theyhavedifferentroundtripefficiencies,ameasureoftheamountofenergylostwhentheenergystoragesystemchargesanddischarges.Theyalsohavemanydifferentdurationtimes—theamountoftimethatastoragetechnologycanproduceelectricity.Thesedurationsrangefromsecondstohours.Theyalsohavedifferentcapacities,ormaximumamountsofpowerthattheycandischargeontothegrid.
Capacitycanreach1,000megawatts(MW)forpumpedhydroelectricandcompressedairenergystoragesystems.
13
Technologieslikebatteriesandflywheelshavesmallercapacitiesandshorterdischargetimes.Seefigure5forinformationonselectedtechnologypower,themaximumamountofelectricitythatthestoragecanprovide,andduration.
12
Wedonotdiscussconcentratedsolarthermalenergyforthisreportbecauseitcannottakeenergyfromthegrid,andhydrogenbecauseitwasnotsufficientlyestablishedduringourreview.
13
Amegawatt(MW)isaunitofelectricpower.Onegigawattis1,000megawatts.Abatterywith1MWcapacityanda
Note:Becausetechnologycharacteristicsarequicklyevolvingthisfiguremaynotberepresentativeofthefullrangeoftechnologycapabilities.
Thegridwasnotdesignedwithadvancedenergystorageinmind.Energystoragemaybechallengingtointegratewiththeexistinginfrastructurebecauseitmaynotfitintotheexistingpolicyandregulatoryframework.Forexample,itmayactastransmission,electricitydemand,andinfrastructure,alongwithitsabilitytoshift
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 年产xx桦木地板项目可行性研究报告(创业计划)
- 年产xx水沟盖板项目建议书
- 新建A9企业管理平台EMP系统项目立项申请报告
- 折叠桌项目可行性研究报告
- 地板漆项目可行性研究报告
- 中班数学公开课教案:有趣的桔子宝宝
- 2023-2024学年广东省深圳市福田区六年级上学期期末英语试卷
- 小班社会教案及教学反思《新教室新班级》
- 【同步配套】北京版五年级下册数学同步教案-4.4 分数的意义(四)
- 地方政府与城投企业债务风险研究报告-山西篇 2024 -联合资信
- 火电厂专用英汉对照
- 现代的全面预算管理.ppt
- 道路交通安全法律法规(PPT 90页)
- (完整word版)气缸结构设计
- 土木工程常用术语英文
- MSDS(T-09)快干水2x3
- 《常用正颌外科手术》ppt课件
- 王虎应老师股市预测分析精彩卦例
- (完整版)数独题目100题
- 【原创】仁爱英语 七年级上册情景交际+看图写话(有答案)
- 危重新生儿的病情观察及护理要点
评论
0/150
提交评论