公用事业规模能源 贮存_第1页
公用事业规模能源 贮存_第2页
公用事业规模能源 贮存_第3页
公用事业规模能源 贮存_第4页
公用事业规模能源 贮存_第5页
已阅读5页,还剩74页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

UnitedStatesGovernmentAccountabilityOfficeReporttoCongressionalAddressees

March2023

GAO-23-105583

TECHNOLOGYASSESSMENT

Utility-ScaleEnergyStorage

TechnologiesandChallengesforanEvolvingGrid

Thecoverimagedisplaysimagesofagas-poweredturbineforelectricitygeneration,andpumpedhydroelectric,flywheel,andbatteryenergystoragetechnologies.

Coversources:GAO(illustration);contributor_aerial/Regan/malp/filins/(photoslefttoright).|GAO-23-105583

Highlightsof

GAO-23-105583,

areporttocongressionaladdressees

March2023

WhyGAOdidthisstudy

TheU.S.electricitygridconnectsmorethan11,000powerplantswitharound158millionresidential,commercial,andotherconsumers.Energystoragetechnologieshavethepotentialtoenableseveralimprovementstothegrid,suchasreducingcostsandimprovingreliability.Theycouldalsoenablethegrowthofsolarandwindenergygeneration.

GAOconductedatechnologyassessmenton(1)technologiesthatcouldbeusedtocaptureenergyforlaterusewithintheelectricitygrid,

(2)challengesthatcouldimpactenergystoragetechnologiesandtheiruseonthegrid,and(3)policyoptionsthatcouldhelpaddressenergystoragechallenges.

Toaddresstheseobjectives,GAOreviewedagencydocumentsandotherliterature;interviewedgovernment,industry,academic,andpowercompanyrepresentatives;conductedsitevisits;andconvenedavirtualmeetingofexpertsincollaborationwiththeNationalAcademiesofSciences,Engineering,andMedicine.GAOisidentifyingpolicyoptionsinthisreport(seep.2).

View

GAO-23-105583.

Formoreinformation,contactBrianBothwellat(202)512-6888,

bothwellb@.

TECHNOLOGYASSESSMENT

Utility-ScaleEnergyStorage

TechnologiesandChallengesforanEvolvingGrid

WhatGAOfound

Technologiestostoreenergyattheutility-scalecouldhelpimprovegridreliability,reducecosts,andpromotetheincreasedadoptionofvariablerenewableenergysourcessuchassolarandwind.Energystoragetechnologyusehasincreasedalongwithsolarandwindenergy.SeveralstoragetechnologiesareinuseontheU.S.grid,includingpumpedhydroelectricstorage,batteries,compressedair,andflywheels(seefigure).Pumpedhydroelectricandcompressedairenergystoragecanbeusedtostoreexcessenergyforapplicationsrequiring10ormorehoursofstorage.

Lithium-ionbatteriesandflywheelsareusedforshorter-durationapplicationssuchaskeepingthegridstablebyquicklyabsorbingordischargingelectricitytomatchdemand.Flowbatteriesrepresentasmallfractionoftotalenergystoragecapacityandcouldbeusedforapplicationsrequiring10ormorehoursofstorage.Metal-airbatteriesarebeingevaluatedforapplicationsrequiring10ormorehoursofstorage.

PumpedHydroelectric(left)andLithium-IonBattery(right)EnergyStorageTechnologies

Energystoragetechnologiesfacemultiplechallenges,including:

Planning.Planningisneededtointegratestoragetechnologieswiththeexistinggrid.However,accurateprojectionsofeachtechnology’scostsandbenefitscouldbedifficulttoquantify.Further,refinementofcosts,benefits,andotherdataareneededtoinformtheplanningprocess.

Regulation.Rulesandregulationsvaryacrossregionsandstates,whichforcesenergystorageprojectdeveloperstonavigateapatchworkofpotentialmarkets.Developersthatwanttodeploystorageacrossmultiplemarketsmayneedtoconductseparateanalysestodetermineeachregion’sregulatoryoutlookandprofitpotential.

Standardization.Codesandstandardsmayneedrevisingandmustkeeppacewithmaturingtechnologiestominimizepublicsafetyandwelfarerisks.However,thetechnology’sevolutionanddeploymentisoutpacingcodesandstandardsdevelopment.Asaresult,entitiesseekingtodeploynewtechnologiesmayfacechallengesapplyingexistingcodesandstandardstonewtechnologies.

Valuation.Realizingthepotentialofenergystoragetechnologiesmaydependontheabilitytovalueinvestments.Forexample,profitpotentialcanvarybecauseregionsandstatesvaluestoragedifferently,reflectinglocalmarketrulesandregulations.

UnitedStatesGovernmentAccountabilityOffice

UnitedStatesGovernmentAccountabilityOffice

GAOdevelopedsixhigh-levelpolicyoptionsinresponsetothesechallenges.Thesepolicyoptionsareprovidedtoinformpolicymakersofpotentialactionstoaddressthepolicychallengesidentifiedinthistechnologyassessment.Theyidentifypossibleactionsbypolicymakers,whichincludeCongress,federalagencies,stateandlocalgovernments,academicandresearchinstitutions,andindustry.Thestatusquooptionillustratesascenarioinwhichpolicymakersdonotintervenewithongoingefforts.

PolicyOptionstoAddressChallengestoUtility-ScaleEnergyStorage

Policyoptionsandimplementationapproaches

Opportunities

Considerations

Statusquo(reportp.

48

)

Policymakerscouldmaintainthestatusquothrough:

Taxcreditsandfunding

Researchanddevelopment

Previousplansandprogramsbystateswouldcontinue,includingactionsforenergystorage.

Thefederalgovernmenthasvariousnationalcapabilitiestosupportenergystoragetechnologyincentivesanddemonstration.

DOEsupportforstorageresearchanddevelopmentwouldcontinue.

Somepolicymakersmaylacksufficientinformationtomakedecisionsonevolvingstoragecapabilities.

Storagedevelopment,deployment,andusecouldbeleftdependentonforcesoutsidepolicymakers’control.

Integration(reportp.

50

)

Policymakerscouldincludecleargoalsandnextstepsinplanstohelpintegratestorage,by:

Establishingroadmaps,basedonstoragecostsandbenefits

Assessingstorageinplans

Storageplanningcouldhelppolicymakersidentifyandremovebarrierstoenergystoragedeployment.

Planscouldincreaseinvestors’confidenceandhelpthemdeterminestorageinvestments.

Plansthatseektoalterconventionalgridplanningcouldbedifficulttoexecute.

Stakeholdershavesetdifferentgoalsforlow-carbonelectricgeneration.

Planningdependsonfactorssuchaslocationsuitability;noteverytechnologyissuitedforeverylocation.

Regulation(reportp.

52

)

Policymakerscouldreviseandenactrulesandrequirementsforhowstorageisdefined,used,orownedby:

Identifyingmarketbarriers

Establishingtargetsormandates

Modernizingownershipmodels

Couldpromoteenergystoragetechnologiesbyimprovinggridefficiencywhilereducingcostsforallcustomers.

Couldhelplowercostsandreducethetimelineforinterconnection.

Couldacceleratepermitapprovaltimelines.

Regulationsdifferacrossstates,whichcouldmakefindingtherightregulatorymodeltoachieveenergygoalsachallenge.

Integratingnewtechnologieswithconventionalgridplanningcanbechallenging.

Changestorulesandregulationscouldexcludecertaintechnologies.

Standardization(reportp.

54

)Policymakerscouldupdateorcreatenewcodesandstandardsandprovideeducationonstoragesafetyrisks.

Couldhelpstakeholdersoperatestoragesystemsmoresafely.

Standardsplacedintoregulations

couldhelpaddressstorageperformancerequirements.

Codesandstandardstaketimetodevelopandcouldbeoutdatedifnotadoptedinatimelymanner.

Standardsmaybeambiguous,whichcouldmakeitdifficulttodesignstoragesystems.

Supportmanufacturingandadoption(reportp.

56

)Policymakerscouldsupportactionstohelpenergystoragemanufacturingandadoptionchallengesby:

Enactingbatteryreuseandrecyclingpolicies

Conductingoutreach

Targetingactivitiestosupportstoragedevelopmentanddeployment

Reuseandrecyclingpoliciescouldincreasetherecoveryofproductsandmaterials.

Stakeholderoutreachandinformationalprogramscouldhelpovercomeawarenessandfamiliaritychallenges.

Federalandstatefinancialsupportforlonger-durationenergystoragedevelopmentanddemonstrationcouldbeimportantinafutureelectricitysystempoweredbywindandsolargeneration.

Incentivesandmotivationtoinvestinnewrecyclingapplicationsislimited.

Fundingmayfluctuateyeartoyearorfavorshort-termprojects.

Developmentofnewsystemscouldbedifficultbecauseofengineeringandeconomicuncertainty,particularlyforlonger-durationstorage.

Low-cost,flexiblenaturalgasgenerationcouldmakeitmoredifficultfornewpumpedhydroelectricfacilitiestocompete.

Provideincentives(reportp.

58

)Policymakerscouldcreatemechanismstoincentivizestoragedeployment,by:

Providingincentives,suchasloanguaranteesortaxcredits

Consideringpoliciestoencouragethecaptureofmultiplerevenuestreams

Financialincentivescouldhelpdevelopersandcompaniesdevelopstoragetechnologies.

Technologieswithlongerdurationsmaybenefitfrompoliciesthathelpindustrytocapturetheirfullvalue.

Incentivescouldleadtounintendedoutcomesforgovernmentsordevelopers,andsomestakeholdersmaynotbelievetheyarenecessary.

Technologyvaluevariesbyregion,whichmayaffectstorageincentives,valuation,andrevenuestreams.

Environmentalandsocialcostsandbenefitscouldbedifficulttoquantify.

Source:GAO.|GAO-23-105583

ThisisaworkoftheU.S.governmentandisnotsubjecttocopyrightprotectionintheUnitedStates.ThepublishedproductmaybereproducedanddistributedinitsentiretywithoutfurtherpermissionfromGAO.However,becausethisworkmaycontaincopyrightedimagesorothermaterial,permissionfromthecopyrightholdermaybenecessaryifyouwishtoreproducethismaterialseparately.

Utility-ScaleEnergyStorageGAO-23-105583

PAGE\*roman

iii

TableofContents

Introduction 1

Background 3

Howdoesthegridwork? 3

Whatisenergystorage? 9

Whyenergystorage? 10

Historyofenergystoragetechnologies 12

Factorsaffectingeconomicviability 13

Legalandregulatoryconsiderations 15

Utility-ScaleEnergyStorageTechnologies 18

Multiplestoragetechnologiesareavailable 18

Differentenergystoragedurationshavedifferentusesonthegrid 35

SeveralChallengesMayHinderEnergyStorageTechnologyDevelopmentandUse 39

Planningforstoragetechnologies 39

Challengingregulatoryenvironment 42

Existingcodesandstandardsdonotfullyaddressenergystoragetechnologies 43

Crosscuttingchallenges 44

Valuingenergystorage 46

PolicyOptionstoAddressEnergyStorageTechnologyChallenges 48

Statusquo 48

Integratingstoragetechnologies 50

Revisingandenactingrulesandrequirements 52

Updatingorcreatingcodesandstandards 54

Addressingcrosscuttingchallenges 56

Incentivizingenergystorage 58

AgencyandExpertComments 61

AppendixI:Objectives,Scope,andMethodology 63

AppendixII:ExpertParticipation 68

AppendixIII:GAOContactsandStaffAcknowledgments 69

Figures

Figure1:Theelectricitygrid 4

Figure2:Exampledepictingelectricitystystemload

5

Figure3:U.S.electricpowermarketsandinterconnections 7

Figure4:Independentsystemopertorsandregionaltransmissionorganizations

8

Figure5:Selectedenergystoragetechnologyperformancecharacteristics 9

Figure6:Examplesofenergystorageapplicationsontheelectricitygrid

11

Figure7:Hypotheticalexampleofcurtailedwindenergyonagrid

usingsimulateddata 11

Figure8:Totalinstalledcosts(energycapacity)oflarge-scalebatterystorage

systemsfrom2015-2019

13

Figure9:Percentofutility-scaleenergystorageinoperationbytechnologytype 19

Figure10:Simplifiedinterconnectionstudyprocess

41

Figure11:Examplesofstateenergystorageefforts 51

Abbreviations

DOE

DepartmentofEnergy

EIA

EnergyInformationAdministration

FERC

FederalEnergyRegulatoryCommission

ISO

IndependentSystemOperator

MW

Megawatt

NationalAcademies

NationalAcademiesofSciences,Engineering,andMedicine

NERC

NorthAmericanElectricReliabilityCorporation

RTO

RegionalTransmissionOrganization

Utility-ScaleEnergyStorageGAO-18-3071

441GSt.N.W.

Washington,DC20548

March30,2023CongressionalAddressees

Energystoragetechnologies—suchasbatteries,flywheels,compressedair,andpumpedhydroelectricpower—haveseveralpotentialbenefits.

1

Forexample,theabilitytostoreenergy—especiallyforseveralhoursorlonger—couldreducecosts,increasetheelectricitygrid’sreliability,andimproveitsabilitytorecoverfromdisruptions.Storagetechnologiescouldalsopromoteincreasedadoptionofrenewableenergysourcessuchassolarandwindbycapturingtheirexcesspowerandreturningittothegridwhenthesesourcesarelessavailable.However,energystorage,alongwithrenewableenergygeneration,mayrequirechangesinthewaythepowersystemisorganizedandoperated.

2

Thefederalgovernmenthastakenseveralstepstoexploreorpromoteenergystoragetechnologies.Forexample,in2021theInfrastructureInvestmentandJobsActappropriated

$505milliontotheDepartmentofEnergy(DOE)forenergystoragedemonstrationprojectsforfiscalyears2022to2025.

3

TheactalsorequiredDOEtostudycodesandstandardsforenergystoragesystemsandestablishagrantprogramtoenhanceU.S.batterymanufacturing.Further,theInflationReductionActof2022createdandexpandedtaxcreditsforinvestmentinenergystoragetechnology.

4

Withintheexecutivebranch,theFederalEnergyRegulatoryCommission(FERC)issuedordersin2018and2019toremovebarrierstomarketparticipationforenergystoragetechnologies.

WepreparedthisreportundertheauthorityoftheComptrollerGeneraltoassistCongresswithitsoversightresponsibilities,inlightofbroadcongressionalinterestinutility-scaleenergystoragetechnologies.

5

Weexamined(1)technologiesthatcouldbeusedtocaptureenergyforlaterusewithintheelectricitygrid,(2)challengesthatcouldimpactenergystoragetechnologies

1

Forthepurposesofthisreport,wediscusspumpedhydroelectricstorage;lithiumion,andotherbatterytechnologies;compressedairenergystorage;andflywheelsasexamplesofenergystoragetechnologies.Wedonotdiscussconcentratedsolarthermalenergyforthisreport,becauseitcannottakeenergyfromthegrid,orhydrogen,becauseitwasnotsufficientlywellestablishedduringourreview.

2

Energystoragetechnologiesaresystemsthatarecapableofreceivingelectricenergyfromthegridandstoringitforlaterinjectionofelectricenergybacktothegrid.

3

Pub.L.No.117-58,135Stat.429(2021).

4

Pub.L.No.117-169,§13102,136Stat.1818,1913-21.

5

Forthepurposesofthisreport,wearedefiningutility-scaleassystemsthathaveatleast1megawatt(MW)ofoutput,arelocatedinacentralizedlocation,andareontheutility’ssideofthemeter.

Utility-ScaleEnergyStorageGAO-23-105583

PAGE

10

andtheiruseonthegrid,and(3)policyoptionsthatcouldhelpaddressenergystoragechallenges.

Wefocusedthistechnologyassessmentonutility-scaleenergystoragesystems,selectingpumpedhydroelectricstorage,batteries,compressedairenergystorage,andflywheelsasexampletechnologies.Wedonotdiscussconcentratedsolarthermalenergyinthisreportbecauseitcannottakeenergyfromthegrid,andhydrogenbecauseitwasnotsufficientlyestablishedduringourreview.Wereviewedagencydocumentsandotherliterature;interviewedagencyofficials,expertsandstakeholdersfromindustry,andpowercompanies,amongothers;conductedsitevisits;andheldavirtualmeetingofexperts.Themeetingincludedanon-generalizablesampleof15expertsselectedbasedontheirtechnical,economic,regulatory,operational,orpolicyexpertise.SeeappendixIforadetaileddescriptionofourobjectives,scope,andmethodology.

WeconductedourworkfromDecember2021toMarch2023inaccordancewithallsectionsofGAO’sQualityAssuranceFrameworkthatarerelevanttotechnologyassessments.Theframeworkrequiresthatweplanandperformtheengagementtoobtainsufficientandappropriateevidencetomeetourstatedobjectivesandtodiscussanylimitationstoourwork.Webelievethattheinformationanddataobtained,andtheanalysisconducted,provideareasonablebasisforanyfindingsandconclusionsinthisproduct.

Background

Howdoesthegridwork?

Theelectricitygridisamassivefeatofengineering,whichoneauthorcalled“themostcomplexmachineevermade.”

6

IntheU.S.,itconnectsmorethan11,000powerplantswithover158millionresidential,commercial,andothercustomersviamillionsofpowerlines.Ithasfourdistinctfunctions:generation,electricitytransmission,distribution,andgridoperations.

7

Seefigure1

6

Schewe,PhillipF.,Thegrid:ajourneythroughtheheartofourelectrifiedworld(Washington,DC:JosephHenryPress,2007).

forarepresentationofthegrid.Powerplantsgenerateelectricitybyconvertingotherformsofenergy,suchaschemicalenergyfromfuel,mechanicalenergyfromwindorwater,andnuclearenergy.Oncegenerated,electricityisauniformresourcethatisinterchangeablewithelectricityfromanyothersource.Thegridcarriesthiselectricityfirstthroughhigh-voltage,high-capacitytransmissionlines.Theelectricityisthentransformedtoalowervoltageandsentthroughthelocaldistributionlinestohomesandbusinesses.

7

Generationfacilitiesproduceelectricity.Transmissionlinesmoveelectricitybetweenpowerplantsandpointswhereitisdeliveredtocustomersorotherelectricsystems.Distributiondeliversenergytoretailcustomers.

Gridoperatorsmustensurethatelectricitysupplyconstantlymatchespowerdemand.Thisbalancingactrequiresthemtoforecastelectricitydemandandscheduleandoperatepowerplantstomeetdemand,whichvariesbytimeofdayandyear,sinceitisdifficulttoeconomicallystorelargequantitiesofelectricity.Assuch,electricitymustbeproducedtheinstantitisneededandused.Todothis,gridoperatorssendminute-by-minutesignalstopowerplantstoadjust

output.Onekeypatterntheymustfollowistheriseinconsumerelectricitydemandthroughouttheday,inmanyareas,reachingpeakdemandinthelateafternoonorearlyevening.Typically,gridoperatorsuseasteadyflowofelectricityfrombaseloadpowerplants,whichruncontinuouslyandaretheleastexpensivetooperate.Asdemandincreasestoitspeak,operatorsprogressivelyincreasetheelectricitysuppliedbypeakerplants—electricitygeneratorsreservedfor

operationduringthehoursofhighestdaily,weekly,orseasonalelectricityloads—andothergeneratorsthataremoreexpensivetooperatebutcanbequicklybroughtonline(seefig.2).

aPeakinggenerationiselectricityreservedforoperatingduringthehoursofhighestdaily,weekly,orseasonalelectricityloads.

bIntermediateloadgenerationisnormallyoperatedonadailycycletoserveon-peakloadsduringtheday,butnotoff-peakloadsduringnightsandweekends.

cBaseloadgenerationservestheminimumlevelofelectricpowerdemandofaregion,orcustomerrequiredoveragivenperiodoftimeatasteadyrate.

dRenewablesgenerationrepresentsvariablegenerationprimarilyfromwindorsolarsources,whosepeakgenerationdoesnotnecessarilycoincidewithelectricitysystemperiodsofpeakdemand.

Severalfactorshavemadethetaskofmatchingelectricitysupplyanddemandevenmorecomplex.Variableelectricitysourcessuchaswindandsolarpoweraresupplyinganincreasingshareofelectricity,buttheiroutputvarieswiththeweatheranddoesnotalwaysmatchdemand.Further,theincreasinguseofvariableenergyresources,interactionofsuchenergysourceswithtraditionalgenerationsources,andchangingroleofelectricitycustomershaveincreasedthe

complexityofmatchingelectricitysupplywithdemandatalltimes.

Gridoperatorsconductplanningactivitiestodeterminegridinfrastructureadequacy,identifycapacityneeds,andevaluatethecostandeffectivenessofpotentialsolutionstoaddresstheseneeds.Utilitiesdealwithuncertaintypartlybyproducingarangeofforecastsbasedondemographicandeconomicfactors,andbymaintainingexcessgenerationcapacity,knownasreserves.

Additionally,utilitiesusemodelstohelpchoosetheleast-costcombinationofelectricitygeneratingresourcestomeetdemandinordertoreducecosts.Stateregulatorsapproveofutilityinvestmentsbeforefacilitiesarebuiltorwhenutilitiesseektorecovercostsintheratesconsumersarecharged.Further,somestatesuseintegratedresourceplanningprocessestodeterminewhichfacilitiesshouldbebuilt.Thisprocessisintendedtomeetfuturepowerdemandbyidentifyingtheneedforgeneratingcapacityanddeterminingthebestresourcemixtomeetsystemneedsatthelowestcosts.

Theelectricitygridinthelower48statesismadeupofthreemainparts,knownasinterconnections,whichoperatelargelyindependentofeachother,withlimited

powertransfersbetweenthem.

8

Seefigure3formapsofinterconnectionsandU.S.electricpowermarkets.Further,howpowerisboughtandsoldvariesbyregionandthereisamixofregulatorymarketenvironments.Someutilitiesmayoperateunderamixofmarketenvironments.Further,someutilitiesmaybeinvestor-ownedandregulatedbypublicpolicy,whileothersmaybepubliclyownedandregulatedthroughtheirownership,inadditiontomanystateandfederallaws.U.S.utilitiesoperateintraditionallyregulatedandderegulatedmarkets.

Traditionallyregulatedmarkets.Intraditionallyregulatedmarkets,utilitiesaretypicallysolelyresponsiblefor

8

TheWestern,Eastern,andElectricReliabilityCouncilofTexas(ERCOT)interconnectionsconsistofbalancingauthoritieswhichcanbeindependentsystemoperators,regionaltransmissionorganizations,orindividualpowercompanies.

Balancingauthoritieshavebalancingresponsibilitiesforaspecificportionofthepowersystemandensurethatpowersystemsupplyanddemandarebalanced,whichisrequiredtomaintainsafeandreliableoperationofthepowersystem.

generating,transmitting,anddistributingelectricitytotheircustomers.

Deregulatedmarkets.Inderegulatedmarkets,utilitiesthatserveretailcustomerscannotownpowerplants;theyareonlyresponsiblefordeliveringelectricitytocustomers,andforcustomerbilling.

9

Insuchmarkets,electricitygeneratingentitiestypicallyselltheelectricitytheygeneratethroughcompetitivepowermarkets.Independentsystemoperators(ISO)andregionaltransmissionorganizations(RTO),formedinresponsetoFERCorders,aregroupsthatcoordinate,control,andmonitortheelectricgridintheseareas.Seefigure4foramapofISOsandRTOs.

9

Transmissionsystemsarelinesandequipmentthatmoveelectricityfromwhereitissuppliedtowhereitisdeliveredtocustomersorothersystems.

aPJMinterconnectionandSouthwestPowerPoolareRegionalTransmissionOrganizations.

Responsibilityforpowerindustryregulationisdividedamongstatesandthefederalgovernment.Forexample,theFederalPowerActgivesFERCtheresponsibilitytoregulatethetransmissionandwholesalesaleofelectricityininterstatecommerce,andtoensurethattheratesforsuchtransmissionandwholesalesalesarejustandreasonable.

10

Stateentities,suchaspublicutilitycommissions,regulateutilitymanagement,operations,andelectricityratestructures.Insomeregions,ISO’sandRTOsmanageelectricitytransmissionandwholesaleelectricitymarkets.AccordingtotheNational

10

16U.S.C.§§824,824d.

AcademiesofSciences,Engineering,andMedicine(NationalAcademies),thisdividedresponsibilitycontributestomakingitdifficulttomakegeneralizationsaboutmanyaspectsoftheU.S.electricitysystem.

AccordingtoaNationalAcademiesconsensusstudy,itcanbechallengingtodeterminewhoisinchargeofplanning,developing,andensuringfuturepowersystemintegrity.

11

IntheU.S.,nosingleplannerordesignerisresponsiblefortheelectricitysystem.Thegridhasbeendevelopedinanincrementalandpiecemealprocessdrivenbythesometimes

11

NationalAcademiesofSciences,Engineering,andMedicine,TheFutureofElectricPowerintheUnitedStates(Washington,D.C.:NationalAcademiesPress.2021).

divergentinterestsoffederal,state,regional,andlocalauthoritiesoperatingdifferentlyintheirrespectiveareas.Thisincrementalprocesshasshapedhowthegridhasevolved,andaccordingtothisNationalAcademiesstudy,howitwillcontinuetoevolve.

Whatisenergystorage?

Typesofenergystoragetechnologiesincludepumpedhydroelectricstorage,lithium-ionandotherbatterytechnologies,compressedairenergystorage,andflywheels.

12

Thesetechnologieshavedifferentperformancecharacteristicsthatmaymakethemmoresuitableforsomegridservicesthanothers.Forexample,theyhavedifferentroundtripefficiencies,ameasureoftheamountofenergylostwhentheenergystoragesystemchargesanddischarges.Theyalsohavemanydifferentdurationtimes—theamountoftimethatastoragetechnologycanproduceelectricity.Thesedurationsrangefromsecondstohours.Theyalsohavedifferentcapacities,ormaximumamountsofpowerthattheycandischargeontothegrid.

Capacitycanreach1,000megawatts(MW)forpumpedhydroelectricandcompressedairenergystoragesystems.

13

Technologieslikebatteriesandflywheelshavesmallercapacitiesandshorterdischargetimes.Seefigure5forinformationonselectedtechnologypower,themaximumamountofelectricitythatthestoragecanprovide,andduration.

12

Wedonotdiscussconcentratedsolarthermalenergyforthisreportbecauseitcannottakeenergyfromthegrid,andhydrogenbecauseitwasnotsufficientlyestablishedduringourreview.

13

Amegawatt(MW)isaunitofelectricpower.Onegigawattis1,000megawatts.Abatterywith1MWcapacityanda

Note:Becausetechnologycharacteristicsarequicklyevolvingthisfiguremaynotberepresentativeofthefullrangeoftechnologycapabilities.

Thegridwasnotdesignedwithadvancedenergystorageinmind.Energystoragemaybechallengingtointegratewiththeexistinginfrastructurebecauseitmaynotfitintotheexistingpolicyandregulatoryframework.Forexample,itmayactastransmission,electricitydemand,andinfrastructure,alongwithitsabilitytoshift

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论