




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PublicDisclosureAuthorizedPublicDisclosureAuthorized
PolicyResearchWorkingPaper10738
UsingSurvey-to-SurveyImputationtoFillPovertyDataGapsataLowCost
EvidencefromaRandomizedSurveyExperiment
Hai-AnhDang
TalipKilic
VladimirHlasny
KseniyaAbanokova
CalogeroCarletto
WORLDBANKGROUP
DevelopmentEconomics
DevelopmentDataGroup
March2024
PolicyResearchWorkingPaper10738
Abstract
Surveydataonhouseholdconsumptionareoftenunavailableorincomparableovertimeinmanylow-andmiddle-incomecountries.BasedonauniquerandomizedsurveyexperimentimplementedinTanzania,thisstudyoffersnewandrigorousevidencedemonstratingthatsurvey-to-surveyimputationcanfillconsumptiondatagapsandprovidelow-costandreliablepovertyestimates.Basicimputationmodelsfeaturingutilityexpenditures,togetherwithamodestsetofpredictorsondemographics,employment,householdassets,andhousing,yieldaccuratepredictions.Imputationaccuracyisrobusttovaryingthesurveyquestionnairelength,thechoiceofbasesurveysforestimatingtheimputationmodel,differentpovertylines,
andalternative(quarterlyormonthly)ConsumerPriceIndexdeflators.Theproposedapproachtoimputationalsoperformsbetterthanmultipleimputationandarangeofmachinelearningtechniques.Inthecaseofatargetsurveywithmodified(shortenedoraggregated)foodornon-foodconsumptionmodules,imputationmodelsincludingfoodornon-foodconsumptionaspredictorsdowellonlyifthedistributionsofthepredictorsarestandardizedvis-à-visthebasesurvey.Forthebest-performingmodelstoreachacceptablelevelsofaccuracy,theminimumrequiredsamplesizeshouldbe1,000forboththebaseandtargetsurveys.Thediscussionexpandsontheimplicationsofthefindingsforthedesignoffuturesurveys.
ThispaperisaproductoftheDevelopmentDataGroup,DevelopmentEconomics.ItispartofalargereffortbytheWorldBanktoprovideopenaccesstoitsresearchandmakeacontributiontodevelopmentpolicydiscussionsaroundtheworld.PolicyResearchWorkingPapersarealsopostedontheWebat
/prwp.Theauthorsmay
becontactedathdang@andtkilic@.
ThePolicyResearchWorkingPaperSeriesdisseminatesthefindingsofworkinprogresstoencouragetheexchangeofideasaboutdevelopmentissues.Anobjectiveoftheseriesistogetthefindingsoutquickly,evenifthepresentationsarelessthanfullypolished.Thepaperscarrythenamesoftheauthorsandshouldbecitedaccordingly.Thefindings,interpretations,andconclusionsexpressedinthispaperareentirelythoseoftheauthors.TheydonotnecessarilyrepresenttheviewsoftheInternationalBankforReconstructionandDevelopment/WorldBankanditsaffiliatedorganizations,orthoseoftheExecutiveDirectorsoftheWorldBankorthegovernmentstheyrepresent.
ProducedbytheResearchSupportTeam
UsingSurvey-to-SurveyImputationtoFillPovertyDataGapsataLowCost:EvidencefromaRandomizedSurveyExperiment
Hai
-AnhDang,TalipKilic,VladimirHlasny,KseniyaAbanokovaandCalogeroCarletto*
Keywords:consumption,poverty,survey-to-surveyimputation,householdsurveys,Tanzania.
JELCodes:C15,I32,O15.
*TheseniorauthorshipissharedbetweenDangandKilic.Dang
(hdang@;
correspondingauthor)isasenioreconomistintheLivingStandardsandMeasurementStudy(LSMS)UnitattheWorldBankDevelopmentDataGroupinWashington,DCandisalsoaffiliatedwithGLO,IZA,IndianaUniversity,andLondonSchoolofEconomicsandPoliticalScience;Kilic
(tkilic@;
correspondingauthor)istheseniorprogrammanagerfortheLSMSUnitattheWorldBankDevelopmentDataGroupinWashington,DC;Hlasny(vhlasny@)isaneconomicaffairsofficerattheUNESCWAinBeirut,Lebanon;Abanokova
(kabanokova@)
isaneconomistintheLSMSUnitattheWorldBankDevelopmentDataGroupinWashington,DC;andCarletto
(gcarletto@)
istheseniormanagerfortheLSMSandtheStrategyandOperationsUnitsattheWorldBankDevelopmentDataGroupinWashington,DC.WewouldliketothankBenoitDercef,AndrewDillon,AnneSwindale,andparticipantsatthe2023EuropeanSurveyResearchAssociation(ESRA)conference,theIPA/GRPLconference(Northwestern)andvariousseminarsandworkshopsatAustralianNationalUniversity,UniversityofOxford,andtheWorldBankforhelpfuldiscussionandfeedbackontheearlierdrafts.WearegratefulforthefundingfromtheUnitedStatesAgencyforInternationalDevelopment(USAID).
2
1.Introduction
Householdconsumptionsurveydatathatunderliemonetarypovertyestimatesinlow-andmiddle-incomecountriesareoftenunavailable,unreliableorincomparable.Toaddressthesechallenges,imputation-basedmethodshavebecomeincreasinglymorecommonnotonlytofillpovertydatagapsindata-scarceandresource-constrainedcontexts,butalsotoidentifyproject/programbeneficiariesandevaluatedevelopmentproject/programimpactsonpovertyat
lowcost(WorldBank,2021;SmytheandBlumenstock,2022;DangandLanjouw,2023).
1
Buildingontheseminaltechniquethatobtainssmallareaestimatesofmonetarypovertybyimputingfromahouseholdconsumptionsurveyintoacensus(Elbersetal.,2003),survey-to-surveyimputationbuildsanimputationmodelusingappropriatepredictorvariablesfromanexistingolderconsumptionsurvey(basesurvey),whichcanbesubsequentlyappliedtothesamevariablesinanothernon-consumptionsurvey(targetsurvey)toprovidepovertyestimatesforthelattersurvey.Thetargetsurveycanbeeitheranexisting,non-consumptionsurvey,suchasaDemographicandHealthSurvey(DHS)oralaborforcesurvey(StifelandChristiaensen,2007;Douidichetal.,2016),orapurposefullycommissionedsurveythatonlycollectstherequisitepredictors.Recentapplicationsalsoincludesourcingthedatafortherequisitepredictorsfromadministrativerecordstoimputepovertyforhard-to-reachrefugeepopulations(Altindagetal.,2021;DangandVerme,2023),orphonecalldetailrecordstotargettheultra-poor(Aikenetal.,
2023).
Threekeyconceptual,butunderstudied,issuesmotivateourwork.First,theliteratureon
survey-to-surveyimputationhaslongemphasizedtherequirementofhavingidenticalquestions
1Imputationtechniquesarewidelyusedbyinternationalorganizationsandnationalstatisticalagenciestofillinmissingdatagapssuchaseducationstatistics(UOE,2020)andincomedata(USCensusBureau,2017).SeealsoDangandLanjouw(2023)forarecentreviewofpovertyimputationstudies.
3
forpovertypredictorsinbothbaseandtargetsurveys.However,evenifthisrequirementisfulfilled,substantialdifferencesmaystillexistbetweenbaseversustargetsurveysregardinglength,thematicscope,andcomplexityofquestionnaires.Thesedifferencesmayleadtoconsiderabledifferencesininterviewdurationandrespondentburden,whichcanaffectmeasurementindiversewaysthatareultimatelycontext-andsubject-specific(Kreuteretal.,2011;Eckmanetal.,2014).Inourcase,theunderstudiedtopiciswhetherpovertyimputationaccuracycanbeaffectedbythefactthatthetargetsurveyquestionnaire,bydesign,wouldbelighterandlessburdensomethanitsolder,basesurveycounterpart–eveniftherequisitequestionsunderlyingthepovertypredictorsareidenticalacrossbaseandtargetsurveyquestionnaires.TheonlyavailableevidenceregardingthisquestioncomesfromarandomizedexperimentthatwasimplementedinMalawibutnotreplicatedelsewhere,andthatshowsthemeasurementofpovertypredictorscanindeedbeaffectedbythelengthofthetargetsurveyinawaythatcanalsoimpact
predictedpovertyestimates(KilicandSohnesen,2019).
Thesecondandrelatedissueiswhethershorterconsumptionmodulesincludedinatargetsurvey(e.g.,withreducedoraggregateditemlistsvis-à-visthebasesurvey)canprovidecheaper-to-collectbutreliablepredictorsthatcanfurtherboosttheaccuracyofpovertypredictionsundermarginaladditionalcostsofdatacollection.Inthiscase,therequisitequestionsunderlyingthepovertypredictorsmaybenon-identicalacrossbaseandtargetsurveyquestionnaires–relaxingtheaforementionedtraditionalrequirementforsurvey-to-surveyimputation.Inthisrespect,onlytwostudiesexist,andtheyofferinconclusiveevidence.WhileChristiaensenetal.(2022)suggestthatusingconsumptionsub-aggregatesforpovertyimputationonlyworksundercertainstringentconditions,Dangetal.(forthcoming)analyze14surveysfromvariouscountriesanddemonstrate
thataddinghouseholdutilityexpenditurestoabasicimputationmodelwithhousehold
4
demographicandemploymentattributescanproduceaccuratepovertypredictions-consistentlywithinthe95percentconfidenceinternal,andoftenwithinonestandarderror,oftheobserved
“true”povertyrate.
2
Finally,thelastissuemotivatingourworkisthatexistingstudiesthat“validate”imputedpovertyestimateswereimplementedinartificialsettings.Specifically,thesestudiestypicallypursuevalidationbyestimatinganimputationmodelonanolder,baseconsumptionsurveyandapplyingthemodeltoamorerecent,targetconsumptionsurvey,pretendingthattherewerenoconsumptiondatainthelattersurvey.Thesestudiessubsequentlycomparetheresultingimputedestimatetothetruepovertyratebasedontheactualconsumptiondatainthetargetsurvey.Thefactthatthenewersurveyroundservesbothasthetargetsurveyandasthesourceoftruepovertyabstractsawayfromreal-lifedifferencesinbaseversustargetsurveydesignthatmotivateourworkinthefirstplace.Thesetraditionalartificialsettingsalsodifferfrommanypracticalapplicationsforsurvey-to-surveyimputationwhereanewsurveywithadifferentdesignisimplementedasthetargetsurvey(e.g.,asurveythatdoesnotcollectconsumptiondataorthatadministerslighter
consumptionmodules-asinthecaseofmostproxy-meanstests).
Againstthisbackground,wereportonauniquerandomizedandnationallyrepresentativehouseholdsurveyexperimentthatwasimplementedinTanzaniain2022tosystematicallyinvestigatetheunderstudiedtopicsthathaveabearingontheoperational/practicalapplicationsofsurvey-to-surveyimputationtofillpovertydatagaps.Theexperimentfeaturedthreetreatmentarms(TA)thatsampledhouseholdswererandomlyassignedtoandthatdifferedintermsofquestionnairedesign.TreatmentArm1(TA1)householdswereadministeredaquestionnairethat
collectscomprehensivedataonhouseholdconsumptionandallowsforthecomputationof
2Weusetheterm“true”povertyratetorefertothepovertyratethatcanbeestimatedusingtheactualhouseholdconsumptiondata.
5
benchmarkpovertyestimates,whichisidenticaltothequestionnaireforthebasesurveythatpermitstheestimationofawiderangeofcompetingimputationmodels.TA2householdswereadministeredalightquestionnairevariantthatonlyincludedquestionsthatpermittheestimationofadata-modestsubsetofimputationmodels,whichadditionallyincludestheTA1foodconsumptionmodulebutwithareducedlistofkeyfooditems.Finally,TA3householdswereadministeredanalternativelightquestionnairethatsharesthesamecoreastheTA2questionnaireandthatincludesalternate,aggregatedversionsofTA1foodandnon-foodconsumptionmodules.ThesedataareinturncomplementedwiththedatafromthenationallyrepresentativeTanzaniaNationalPanelSurvey(TZNPS),andspecificallytheTZNPS2020/21and2019/20roundsthatareusedasbasesurveysfortheestimationoftheimputationmodelsthatareinturnappliedtoeach
treatmentarmtoobtainacross-yearpredictions.
Throughourresearch,wemakenovelcontributionstotheliteratureby(a)providingexperimentalevidenceregardingtheeffectsoftargetsurveydesignonpovertyimputation,(b)sidesteppingusualconcernsregardingthe“validation”ofimputedestimatesbyofferingareal-lifesettingwithbenchmarkdata,and(c)providingnewevidenceregardingtheminimum-requiredbaseandtargetsurveysamplesizes.Toourknowledge,weofferthefirststudythatleveragesarandomizedandnationallyrepresentativesurveyexperimenttorigorouslystudytheseinter-connected,butlittle-explored,researchquestionsthatareattheheartofsurvey-to-surveyimputation.Inthissense,ourworkisalsobroadlyrelatedtoagrowingliteraturethatreliesonrandomizedsurveyexperimentsinlow-andmiddle-incomecontextstogaugetherelativeaccuracyandcost-effectivenessofcompetingsurveymethodsvis-à-visgold-standardmeasurementapproaches(Beegleetal.,2012;Arthietal.,2018;Gourlayetal.,2019;DeWeerdtetal,2020;
Kilicetal.,2021;Abateetal.,2023).
6
Theanalysisdemonstratesthatifthepredictorsinthetargetsurveyareelicitedthroughquestionsthatareidenticaltotheircounterpartsinthebasesurvey,imputationaccuracyisnotimpactedbytheremainingdifferencesbetweenthebaseandtargetsurveysintermsofscopeandcomplexity.Basicimputationmodels,includingacoresetofpredictorsondemographics,employment,householdassetsandhousing,and/orutilityexpenditures,yieldhighlyaccuratepredictionsvis-à-visthetruepovertyrate.Furthermore,regardingTA2orTA3withmodified(eithershortenedoraggregated)foodandnon-foodconsumptionmodules,imputationmodelsincludingfoodconsumptionornon-foodconsumptionexpendituresaspredictorsdowellonlyifthedistributionsofthepredictorsarestandardizedvis-à-visthebasesurvey(whichcanbeeithertheTZNPSorTA1).Finally,forthebest-performingmodelstoreachacceptablelevelsofaccuracy,theanalysisshowsthattheminimum-requiredsamplesizeshouldbe1,000observationsforboththebasesurveyandthetargetsurvey.Theresultsarerobusttothechoiceofbasesurveysusedforimputationmodelestimation;differentpovertylines;andalternative(quarterlyormonthly)CPIdeflators.Ourproposedapproachtoimputationisalsoshowntoperformbetterthan
multipleimputationandarangeofmachinelearningtechniques.
Thispaperconsistsofsixsections.Section2presentstheexperimentaldesign(Section2.1)anddescriptivestatistics(Section2.2).Section3discussestheanalyticalframework.Section4presentsthemainestimationresults(Section4.1)androbustnesschecks(Section4.2),followedbysection5onvariousextensions.Section6concludes.WeprovideadditionalestimationresultsinAppendixA,furtherdescriptionoftheconsumptionaggregatesinAppendixB,andmore
detaileddiscussionoftheformulasandintuitionbehindthemethodinAppendixC.
7
2.Experimentaldesignanddescriptivestatistics
2.1.Experimentaldesign
ThedatacomefromtheTanzaniaMethodologicalSurveyExperimentonHouseholdConsumptionMeasurement,whichwasconductedfromApriltoJuly2022bytheTanzaniaNationalBureauofStatistics,withtechnicalsupportfromtheWorldBankLivingStandardsMeasurementStudy(LSMS)program.InformedbythepowercalculationsbasedonthepastroundsoftheTanzaniaNationalPanelSurvey(TZNPS)andtheHouseholdBudgetSurvey(HBS),theexperimentspanned143enumerationareas(EAs)acrossMainlandTanzaniaandZanzibar,includingbothurbanandruralareas.IneachsampledEA,25householdswereselectedatrandomfromafreshhouseholdlistingthatwasconducted,outofwhichfivesampledhouseholdswere
assignedatrandomtooneoffivesurveytreatmentarms.
Weanalyzethreesurveytreatmentarmsthataremostrelevantforourstudy.
3
TreatmentArm1(TA1)administeredthestandardTZNPShouseholdquestionnairethatprovidesobservedconsumptionandpovertyestimatesandthatpermitstheestimationofallimputationmodelspresentedinDangetal.(forthcoming),whoseTanzania-specificportionsoftheresearchreliedonthedatafromthepreviousroundsoftheTZNPS.TableA.1inAppendixAshowseachofthe
modelsandtheirpredictors.TheTA1sampleconsistsof711households.
TreatmentArm2(TA2)administeredalightquestionnairethatincludes:
(1)“Coremodules”thatonlyincludethequestionsnecessaryforcomputingthepredictorsfor
adata-modestsubsetofmodelsthatarepresentedinDangetal.(forthcoming)-specifically
3Thetwoadditionaltreatmentarmsthatarenotdiscussed/usedinthispaperwere(a)thesamplethatwassubjecttoa14-daydiaryfordatacollectiononfoodconsumption,followingtheHBS2017/18methodology,andotherwiseidenticalnon-foodconsumptionexpendituremodulesvis-à-visT1;and(b)thesamplethatwassubjecttoamodifiedversionofT1questionnaire,specificallywithafoodconsumptionmodulethatwassetuptobealignedwiththeT1/TZNPSfoodconsumptionmodulebutwiththeHBSfooditemlist.
8
Models1,2,8and9,whichrequirepredictorsrelatedtohouseholddemographics,
employmentattributes,housingcharacteristics,assets,utilityexpenditures,and
(2)AshorterversionoftheTA1foodconsumptionmodule-withanidenticalset-up/setofquestionsbutwithareducedlistoffooditems–alignedwiththeearlierSurveyofHouseholdWelfareandLabourinTanzania(SHWALITA)andspecificallythe“shortlist”
treatmentarminthatstudy.
4
TheTA2foodconsumptionmoduleisslottedimmediatelyaftertheTA2coremodules,covering26itemsoutofthe71itemsincludedinTA1.
5
Theseselecteditemsaccountfor69percentofthemonetaryvalueoffoodconsumptioninTA1,indicatingthatthereducedlistoffoodconsumptionitemsunderTA2missesoutonaconsiderableshareofthefoodexpenditurecomparedtothefullTA1foodconsumptionmodule.Asdiscussedlater,TA2dataonfoodconsumptionareusedtoestimateanadditionalimputationmodel,namelyModel3aspresentedinDangetal.(forthcoming),whichincludeshouseholdfoodconsumptionexpendituresasapredictor.TheTA2sampleconsistsof701households.TableA.2inAppendixApresentsexpendituresonthese
foodcategoriesforTA2andTA3incomparisonwiththosefromTA1.
Finally,TreatmentArm3(TA3)administeredanalternativelightquestionnairevariantthat
includes:
(1)ThesameTA2coremodulesthatallowfortheestimationofModels1,2,8,and9as
presentedinDangetal.(forthcoming),
4FormoreinformationregardingSHWALITA,pleaseseeBeegleetal.(2012)andvisit
https://www.uantwerpen.be/en/staff/joachim-deweerdt/public-data-sets/shwalita/#introduction.
5TA2covers13individualfooditemsand4itemcategoriescorrespondingto13itemsonTA1.The13individualitemsinclude:rice(husked);maize(grain);maize(flour);milletandsorghum(flour);cassavafresh;cassavadry/flour;sweetpotatoes;cookingbananasandplantains;sugar;beefincludingmincedsausage;dried/salted/cannedfishandseafood;freshmilk;cookingoil.The4groupeditemcategories(covering13itemsinTA1)include:peas,beans,lentils,andotherpulses;Onions,tomatoes,carrots,andgreenpeppers;Spinach,cabbage,andothergreenvegetables;andFreshfishandseafood.
9
(2)Anaggregatedfoodconsumptionmodulethatcorrespondstothe“collapsedlist”treatment
armintheSHWALITAstudy,and
(3)Aseriesofshort,aggregatednon-foodconsumptionexpendituremodulesthatwereinformedbythevariantsfromtheSHWALITAstudybutwererefinedinsomeinstancestobetteralignwiththeCOICOPcategories(UnitedNations,2018),related,forinstance,
toeducation,health,andutilitiesexpenditures.
TheTA3collapsedfoodconsumptionmoduleisslottedimmediatelyafterthecoremodules,coveringall12broadfoodcategories(includingalcoholicbeverages),andonlyaskingtherespondenttostatethemonetaryvaluethattheconsumedquantityoftotalfoodinthatcategorywouldhavecost,haditbeenpurchased.
6
TA3non-foodconsumptionexpendituremodulesarethenslottedimmediatelyaftertheTA3collapsedfoodconsumptionmodule,andtogether,thesesetsofmodulespermittheestimationofModels3and4aspresentedinDangetal.(forthcoming).
TheTA3sampleconsistsof698households.
ThesedataareinturncomplementedwiththedatafromthenationallyrepresentativeTZNPS2020/21and2019/20rounds,whichareusedasbasesurveystoestimatetheimputationmodelsthatareinturnappliedtoeachtreatmentarm.Themainresultsarebasedonthe2020/21round,whileAppendixAincludesconsistentfindingsbasedonthe2019/20round,asdiscussedbelow.TheTZNPSisamulti-topic,nationallyrepresentativelongitudinalhouseholdsurveythathasbeenimplementedbytheNBSsince2008,withfinancialandtechnicalsupportfromtheWorldBankLivingStandardsMeasurementStudy–IntegratedSurveysonAgriculture(LSMS-ISA)project.
ThequestionsforthepovertypredictorsrequiredfortheestimationofModels1,2,8and9are
6TA3covers:cerealsandcerealproducts;starches;sugarandsweets;pulses,dry;nutsandseeds;vegetables;fruits;meat,meatproducts,fish;milkandmilkproducts;oilandfats;spicesandotherfoods;alcoholicandnon-alcoholicbeverages.
10
identicalacrosstheconsumptionexperimentaswellastheTZNPS020/21and2019/20rounds.Thesamplesizeswere4,644in2020/21(followingupwithapanelsamplethatwasfirstinterviewedduringthe2014/15round)and1,179householdsin2019/20(followingupwithasubsetofanolderpanelsamplethathadbeeninterviewedaspartoftheTZNPS2008/09,2010/11and2012/13).Asdiscussedabove,therearedifferencesintermsoffoodandnon-foodconsumptionmodulesthatwereintroducedinTA2andTA3tounderstandthepotentialforusing
lighterversionofthesemodulestoobtainaccuratepovertypredictions.
Finally,inTA1andtheTZNPS2020/21and2019/20rounds,thetotalconsumptionistakentobethesumoffood(consumedatandawayfromhome)andnon-foodconsumption(health,education,utilities,furnishingandhouseholdexpenses,transport,communication,retreats,andother).Weprovidemoredetaileddiscussiononthefoodandnon-foodconsumptionexpenditure
aggregatesfortheTZNPSsandthethreeTAsinAppendixB.
2.2.Descriptivestatistics
Wespatiallyandinter-temporallydeflatealltheconsumptionaggregatesinthethreeTAsandtheTZNPSs.ThespatialandtemporalpricedifferencesinnominalhouseholdconsumptionexpenditureswithinallsurveyroundsarecorrectedusingFisherpriceindices.Thesepriceindicesareestimatedwithineachsurveyroundbystratumandquarter(ormonth,inthecaseofthe
experiment),andthebaseperiodineachestimationcomprisestheentireperiodofeachround.
Theacross-surveyintertemporaldeflationisinturnconductedusingtheannualinflationseriesforvariousconsumptiongroups,asobtainedfromtheWorldBankGlobalDatabaseofInflation
(Haetal.2023).
7
Specifically,foodexpenditureisdeflatedusingtheconsumerpriceinflationfor
7Toaccessthedatabase,visit:
/en/research/brief/inflation-database.
11
foodandnon-alcoholicbeverages,whileutilitiesexpenditureisdeflatedusingtheconsumerpriceinflationforenergy(capturinghousing,water,electricity,gasandotherfuels).Remainingnon-foodconsumptionexpenditureisdeflatedusingtheheadlineaverageconsumerpriceinflation.The
year2022isusedasthebaseyear.
Hence,theconsumptionexpendituresasmeasuredinourexperimentin2022aretakenintheirnominalvalues,whiletheexpendituresinpreviousroundsaredeflated.TheexpenditurevalueselicitedduringtheTZNPS2020/21,conductedbetweenDecember2020andJanuary2022,aredeflatedinaccordancewiththe2021-2022inflation.Similarly,theexpenditurevalueselicitedduringtheTZNPS2019/20,conductedbetweenJanuary2019andJanuary2020,aredeflatedinaccordancewiththe2020-2022inflation.Inwhatfollows,allexpendituresarereportedinyear-2022Tanzanianshillings(TSH),andtotalannualconsumptionperadultequivalentiscompared
totheTZNPS2020/21povertylinedeflatedtopricesin2022.
Table1providesdescriptivestatisticsforTZNPS2020/21,2019/20roundsandforeachofthesurveytreatmentarms,coupledwiththeresultsfromthetestsofmeandifferencesamongtheTAs.The“good”newsisthatacrosstreatments,comparisonsoftheprospectivepovertypredictorsthatarerequiredforModels1,2,8and9largelydonotrevealstatisticallysignificantdifferences.Theonlyexceptionsareparticipationinwagework,andbicycleownership,betweenTA1andTA2;radioownership,urban–ruralresidenceandutilityexpenditures(thoughwithmarginaldifferences)betweenTA2andTA3;andaccesstopipedwater,betweenTA1andTA3.Thesefindingsare
instarkcontrastwiththoseofKilicandSohnesen(2019)
8
anddonotraiseflagsregardingthe
8KilicandSohnesen(2019)reportonarandomizedsurveyexperimentthatwasconductedinMalawiin2016andthatshowsthatobservationallyequivalent,aswellasidentical,householdsinfactanswerthesamequestionsdifferentlydependingonwhethertheyareinterviewedwithashortquestionnaireoritslongercounterpart.Theauthorsfindlargeandstatisticallysignificantdifferencesinreportingacrossarangeoftopicsandquestiontypes,whichcanleadtoadifferenceof3to7percentagepointsinpredictedpovertyestimates,dependingontheimputationmodel.Theauthors,however,demonstratethattheimputationmodelusingonlythepredictorsthatareelicitedpriortothe
12
sensitivityofmeasurementtothedifferencesinlengthandcomplexitybetweenthebasesurveyandtargetsurveyquestionnairedesign,providedthattheidenticalquestionsareutilizedacrossthesurveys.Itisthusreasonablethatchangesinthedistributionsofthepredictorvariablesovertimeforthesefourmodelscancapturethechangeinthepovertyratebetweentherounds(i.e.,satisfying
Assumption2inourimputationframeworkdiscussedinthenextsection).
Ontheotherhand,Table1alsoshow
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 冀教版一年级下册数学教学计划(含进度表)
- 人教版九年级下册数学教学计划(及进度表)
- 2025年湖北省中考英语模拟试卷(附答案)
- 2025年第十届安全生产知识竞赛经典题库及答案(共六套)
- 农村小吃店开业致词简短
- 高新科技研发居间存款合同
- 航空票务居间服务合同
- 建筑柴油供应居间协议样本
- 城市公共交通运营合同
- 停车场智能门禁管理系统
- (一模)哈三中2025届高三第一次模拟考试 语文试题(含答案)
- 西安市城镇基本医疗保险特殊药品治疗(备案计划)申请表【模板】
- JJG 700-2016气相色谱仪
- GB/T 26939-2011种羊鉴定术语、项目与符号
- 可编辑的中国地图
- 《TV背光中光学膜片介绍及常见光学问题分析》复习课件
- 手卫生考核评分标准
- 部编版语文二年级下册生字表(注音)
- 四级消防设施操作员(监控)考核题库与答案
- 《我在长大》-完整版PPT
- 人身损害与疾病因果关系判定指南
评论
0/150
提交评论