




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省温州市海滨中学2022年高二数学文模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设Sn为数列{an}的前n项和,,,则数列的前20项和为(
)A. B.C. D.参考答案:D,相减得由得出,==故选D点睛:已知数列的与的等量关系,往往是再写一项,作差处理得出递推关系,一定要注意n的范围,有的时候要检验n=1的时候,本题就是检验n=1,不符合,通项是分段的.2.若函数存在增区间,则实数a的取值范围为(
)A. B.C. D.参考答案:C【分析】先假设函数不存在增区间,则单调递减,利用的导数恒小于零列不等式,将不等式分离常数后,利用配方法求得常数的取值范围,再取这个取值范围的补集,求得题目所求实数的取值范围.【详解】若函数不存在增区间,则函数单调递减,此时在区间恒成立,可得,则,可得,故函数存在增区间时实数的取值范围为.故选C.【点睛】本小题主要考查利用导数研究函数的单调性,考查不等式恒成立问题的求解策略,属于中档题.3.已知函数的导函数的图象如图所示,那么函数的图象最有可能的是(
)参考答案:A4.复平面内,复数对应点位于(
)
A.第一象限
B.第二象限
C.第三象限
D.第四象限参考答案:D5.如图△A′B′C′是△ABC的直观图,那么△ABC
()A.等腰三角形 B.直角三角形C.等腰直角三角形 D.钝角三角形参考答案:B【考点】斜二测法画直观图.【分析】根据斜二侧画法,∠x′O′y′=135°,直接判断△ABC的直观图是直角三角形.【解答】解:由斜二测画法,∠x′O′y′=135°,知△ABC直观图为直角三角形,如图故选B.6.如图,M,N分别是四面体OABC的边OA,BC的中点,E是MN的三等分点,且,用向量表示为A.B.C.D.参考答案:D7.若是连续函数,则常数A.0
B.1
C.2
D.-2参考答案:C略8.函数的最小正周期为(
)A.
B.
C.
D.参考答案:B9.在△ABC中,已知,,则A等于(
)A. B. C. D.参考答案:D【分析】由正弦定理可得,利用余弦定理表示出,即可求出角。【详解】由正弦定理可得,由余弦定理可得:,,,,又在中,,,故答案选D。【点睛】本题考查利用正弦定理进行边角互化以及余弦定理的简单应用,属于基础题。10.要从编号为01~50的50枚最新研制的某型号导弹中随机抽出5枚来进行发射试验,用每部分选取的号码间隔一样的系统抽样方法确定,在选取的5枚导弹的编号可能是() A.05,10,15,20,25 B.03,13,23,33,43 C.01,02,03,04,05 D.02,04,08,16,32 参考答案:B【考点】系统抽样方法. 【专题】概率与统计. 【分析】根据系统抽样的定义,则抽样间隔相同即可得到结论. 【解答】解:若采用系统抽样,则抽样间隔为50÷5=10, 故只有B满足条件, 故选:B 【点评】本题主要考查系统抽样的应用,比较基础. 二、填空题:本大题共7小题,每小题4分,共28分11.从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图)。若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为
.参考答案:312.已知一个几何体的三视图如图所示,则此几何体的体积为▲.
参考答案:略13.双曲线的离心率为2,它的一个焦点与抛物线的焦点重合,则的值为
.参考答案:略14.已知是双曲线的左焦点,是双曲线的虚轴,是的中点,过点的直线交双曲线于,且,则双曲线离心率是参考答案:略15.若函数f(x)=x3﹣x在(a,10﹣a2)上有最小值,则a的取值范围为
.参考答案:[﹣2,1)【考点】利用导数求闭区间上函数的最值.【分析】由题意求导f′(x)=x2﹣1=(x﹣1)(x+1);从而得到函数的单调性,从而可得﹣2≤a<1<10﹣a2;从而解得.【解答】解:∵f(x)=x3﹣x,∴f′(x)=x2﹣1=(x﹣1)(x+1);故f(x)=x3﹣x在(﹣∞,﹣1)上是增函数,在(﹣1,1)上是减函数,在(1,+∞)上是增函数;f(x)=x3﹣x=f(1)=﹣;故x=1或x=﹣2;故﹣2≤a<1<10﹣a2;解得,﹣2≤a<1故答案为:[﹣2,1).16.给出下列结论:动点M(x,y)分别到两定点(﹣4,0),(4,0)连线的斜率之积为﹣,设M(x,y)的轨迹为曲线C,F1、F2分别曲线C的左、右焦点,则下列命题中:(1)曲线C的焦点坐标为F1(﹣5,0)、F2(5,0);(2)曲线C上存在一点M,使得S=9;(3)P为曲线C上一点,P,F1,F2是一个直角三角形的三个顶点,且|PF1|>|PF2|,的值为;(4)设A(1,1),动点P在曲线C上,则|PA|﹣|PF2|的最大值为;其中正确命题的序号是.参考答案:(3)(4)【考点】直线与椭圆的位置关系.【分析】求出曲线C的方程为:=1,x≠±4.在(1)中,C的焦点坐标为F1(﹣,0)、F2(,0);在(2)中,(S)max=3<9;在(3)中,由椭圆定义得的值为;在(4)中,当P,F2,A共线时,|PA|﹣|PF2|的最大值为|AF2|.【解答】解:∵动点M(x,y)分别到两定点(﹣4,0),(4,0)连线的斜率之积为﹣,∴=﹣,整理,得曲线C的方程为:=1,x≠±4在(1)中,∵F1、F2分别曲线C的左、右焦点,c==,∴线C的焦点坐标为F1(﹣,0)、F2(,0),故(1)错误;在(2)中,曲线C上存在一点M,(S)max==bc=3<9,故(2)错误;在(3)中,当∠PF2F1=90°时,|PF2|==,|PF1|=8﹣=,的值为,故(3)正确;在(4)中,当P,F2,A共线时,|PA|﹣|PF2|的最大值为|AF2|==,故(4)正确.故答案为:(3)(4).17.如图是从甲、乙两个班级各随机选出9名同学进行测验成绩的茎叶图,从图中看,平均成绩较高的是
▲
班.参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(13分)某商店经销一种纪念品,每件产品成本为元,且每卖出一件产品,需向税务部门上交元(为常数,)的税收,设每件产品的日售价为元(),根据市场调查,日销售量与(为自然对数的底数)成反比,已知每件产品的日售价为元,日销售量为件。(1)求商店的日利润元与每件产品的日售价元的函数关系式;(2)当每件产品的日售价为多少时该商店的日利润最大,说明理由.参考答案:(本小题满分13分)解:(1)设日销量为,则,
.……2分则日销量为件,每件利润为(x-30-a)元,
则日利润…………4分(1)
当每件产品的日售价为多少时该商店的日利润最大,说明理由.解:由(1):………6分
①当时,,,在上减函数.当x=35时,的最大值为…8分略19.(12分)已知函数(1)当时,解不等式
(2)若函数有最大值,求实数的值参考答案:(1)当时,有,即解得不等式的解集为…………6分(2)由题意……………10分
得因此……………
12分20.(本题满分13分)求与椭圆有共同焦点,且过点的双曲线方程,并且求出这条双曲线的实轴长、焦距、离心率以及渐近线方程.参考答案:略21.
某商场为了促销,采用购物打折的优惠办法:每位顾客一次购物:①在1000元以上者按九五折优惠;②在2000元以上者按九折优惠;③在5000元以上者按八折优惠。(1)写出实际付款y(元)与购物原价款x(元)的函数关系式;(2)写出表示优惠付款的算法;参考答案:(1)设购物原价款数为元,实际付款为元,则实际付款方式可用分段函数表示为:(2)用条件语句表示表示为:22.已知集合A={x|x2﹣3x+2≤0},集合B={y|y=x2﹣2x+a},集合C={x|x2﹣ax﹣4≤0},命题p:A∩B≠?,命题q:A?C.(1)若命题p为假命题,求实数a的取值范围.(2)若命题p∧q为真命题,求实数a的取值范围.参考答案:【考点】复合命题的真假;交集及其运算.【专题】计算题;转化思想;转化法;简易逻辑.【分析】(1)先求出集合A,B的等价条件,根据命题p为假命题,即A∩B=?成立,进行求解即可.(2)若p∧q为真命题,则p,q同时为真命题,建
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安徽省阜阳市颍上二中2025年高考压轴卷化学试卷含解析
- 江西省抚州市临川二中、临川二中实验学校2025年高三第六次模拟考试化学试卷含解析
- 2025年乙苯脱氢催化剂项目合作计划书
- 四川省攀枝花市2024-2025学年高三下学期3月第二次统一考试地理试题(含答案)
- 荆州市小学五年级数学下册阶段评价(三)(分数的意义和性质)(含答案)人教版
- 江苏省苏州市2024-2025学年度第二学期八年级道德与法治期中模拟卷(含答案)
- 2025届云南省牟定县一中高考化学二模试卷含解析
- 慢性肾病超声诊断
- 护理应急急救知识培训
- 2025年小型路面保洁设备项目建议书
- 四川省成都市2025届高三一诊考试英语试卷含解析
- 2024年湖北省安全员C证(专职安全员)考试题库
- 公司绿色可持续发展规划报告
- 职业道德试题及答案
- 《大模型原理与技术》全套教学课件
- 生产异常处理流程
- 2023年护理人员分层培训、考核计划表
- 《护理法律法规》课件
- 企业员工安全生产月培训
- 专题03平行线的性质与判定压轴题真题分类(原卷版)2022-2023学年七年级数学下册重难点题型分类高分必刷题(人教版)
- 围墙拆除重建施工方案
评论
0/150
提交评论