版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年广西壮族自治区玉林市水鸣中学高二数学文期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.某个命题与正整数有关。若当n=k(k∈N)时该命题成立,那么可推得当n=k+1时该命题也成立。现已知当n=5时该命题不成立,那么可推得
(
)A、当n=6时该命题不成立
B、当n=6时该命题成立
C、当n=4时该命题成立
D、当n=4时该命题不成立参考答案:D略2.由“在平面内三角形的内切圆的圆心到三边的距离相等”联想到“在空间中内切于三棱锥的球的球心到三棱锥四个面的距离相等”这一推理过程是
(
)A.归纳推理
B.类比推理
C.演绎推理
D.联想推理参考答案:B3.已知且,则实数的值等于(
)A.
B.
C.
D.参考答案:D略4.我们把由半椭圆+=1(x>0)与半椭圆+=1(x<0)合成的曲线称作“果圆”(其中a2=b2+c2,a>b>c>0).如图,设点F0,F1,F2是相应椭圆的焦点,A1、A2和B1、B2是“果圆”与x,y轴的交点,若△F0F1F2是腰长为1的等腰直角三角形,则a,b的值分别为()A.5,4 B. C. D.参考答案:B【考点】椭圆的简单性质.【专题】计算题;新定义;转化思想;综合法;圆锥曲线的定义、性质与方程.【分析】先求出|F0F2|==b=1,|F1F2|=2=1,由此利用椭圆的性质能求出结果a,b.【解答】解:∵点F0,F1,F2是相应椭圆的焦点,A1、A2和B1、B2是“果圆”与x,y轴的交点,△F0F1F2是腰长为1的等腰直角三角形,∴F0(c,0),F1(0,﹣),F2(0,),∴|F0F2|==b=1,|F1F2|=2=1,∴c2=,a2=b2+c2=.∴a=,b=1.故选:B.【点评】本题考查实数值的求法,是中档题,解题时要认真审题,注意两点间距离公式、椭圆性质的合理运用.5.若,,延长到,使,那么的坐标为()A.
B.
C.
D.参考答案:A6.若曲线在点处的切线方程是,则(
)A.
B.
C.
D.参考答案:B略7.在等比数列中,则(
)A.
B.
C.
D.参考答案:A略8.下面四个说法中,正确的个数为()(1)如果两个平面有三个公共点,那么这两个平面重合(2)两条直线可以确定一个平面(3)若M∈α,M∈β,α∩β=l,则M∈l(4)空间中,相交于同一点的三直线在同一平面内.A.1B.2C.3D.4参考答案:A略9.在中,分别是三内角的对边,且,则角等于(
)
A.
B.
C.
D.参考答案:B略10.下列函数为奇函数的是A.
B.
C.
D.
参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11.(cosx﹣sinx)dx=_________.参考答案:-212.不等式+6>0表示的区域在直线+6=0的 (填“右上方”“右下方”“左上方”“左下方”)参考答案:右下方13.已知x<,则函数y=2x+的最大值是
.参考答案:-1【考点】基本不等式在最值问题中的应用.【分析】构造基本不等式的结构,利用基本不等式的性质即可得到答案.【解答】解:∵x<,2x﹣1<0,则1﹣2x>0;函数y=2x+?y=2x﹣1++1?y=﹣(1﹣2x+)+1?﹣(y﹣1)=1﹣2x+∵1﹣2x>0,∴1﹣2x+=2,(当且仅当x=时,等号成立),所以:﹣(y﹣1)≥2?y≤﹣1故答案为:﹣1.14.圆:和圆:交于两点,则的垂直平分线的方程是
参考答案:15.已知长方形ABCD,AB=4,BC=3,则以A、B为焦点,且过C、D两点的椭圆的离心率为________.参考答案:16.类比平面几何中的勾股定理:若直角三角形ABC中的两边AB、AC互相垂直,则三角形三边长之间满足关系:。若三棱锥A-BCD的三个侧面ABC、ACD、ADB两两互相垂直,则三棱锥的侧面积与底面积之间满足的关系为
.参考答案:17.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本中的青年职工为7人,则样本容量为
.参考答案:15【考点】分层抽样方法;循环结构.【分析】根据分层抽样的定义和方法,先求出每个个体被抽到的概率,再根据用样本容量除以个体总数得到的值就等于每个个体被抽到的概率,由此求得样本容量.【解答】解:根据分层抽样的定义和方法,每个个体被抽到的概率等于=.设样本容量等于n,则有=,解得n=15,故答案为15.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数f(x)=(cosx﹣x)(π+2x)﹣(sinx+1)g(x)=3(x﹣π)cosx﹣4(1+sinx)ln(3﹣)证明:(Ⅰ)存在唯一x0∈(0,),使f(x0)=0;(Ⅱ)存在唯一x1∈(,π),使g(x1)=0,且对(Ⅰ)中的x0,有x0+x1<π.参考答案:【考点】利用导数研究函数的单调性;导数在最大值、最小值问题中的应用.【分析】(Ⅰ)根据x∈(0,)时,f′(x)<0,得出f(x)是单调减函数,再根据f(0)>0,f()<0,得出此结论;(Ⅱ)构造函数h(x)=﹣4ln(3﹣x),x∈[,π],令t=π﹣x,得u(t)=h(π﹣t),求出u(t)存在唯一零点t1∈(0,),即证g(x)存在唯一的零点x1∈(,π),满足x0+x1<π.【解答】证明:(Ⅰ)∵当x∈(0,)时,f′(x)=﹣(1+sinx)(π+2x)﹣2x﹣cosx<0,∴函数f(x)在(0,)上为减函数,又f(0)=π﹣>0,f()=﹣π2﹣<0;∴存在唯一的x0∈(0,),使f(x0)=0;(Ⅱ)考虑函数h(x)=﹣4ln(3﹣x),x∈[,π],令t=π﹣x,则x∈[,π]时,t∈[0,],记函数u(t)=h(π﹣t)=﹣4ln(1+t),则u′(t)=﹣?=﹣=﹣==,由(Ⅰ)得,当t∈(0,x0)时,u′(t)>0;在(0,x0)上u(x)是增函数,又u(0)=0,∴当t∈(0,x0]时,u(t)>0,∴u(t)在(0,x0]上无零点;在(x0,)上u(t)是减函数,且u(x0)>0,u()=﹣4ln2<0,∴存在唯一的t1∈(x0,),使u(t1)=0;∴存在唯一的t1∈(0,),使u(t1)=0;∴存在唯一的x1=π﹣t1∈(,π),使h(x1)=h(π﹣t1)=u(t1)=0;∵当x∈(,π)时,1+sinx>0,∴g(x)=(1+sinx)h(x)与h(x)有相同的零点,∴存在唯一的x1∈(,π),使g(x1)=0,∵x1=π﹣t1,t1>x0,∴x0+x1<π.19.在平面直角坐标系xOy中,点B与点A(-1,1)关于原点O对称,P是动点,且直线AP与BP的斜率之积等于.(1)求动点P的轨迹方程;(2)设直线AP和BP分别与直线x=3交于点M,N,问:是否存在点P使得△PAB与△PMN的面积相等?若存在,求出点P的坐标;若不存在,说明理由.参考答案:略20.已知函数,.(Ⅰ)讨论函数的单调区间;(Ⅱ)设函数在区间内是减函数,求的取值范围.参考答案:(1)求导:当时,,,在上递增当,求得两根为即在递增,递减,递增(2),且解得:21.已知{an}是公比为q的等比数列,且a1,a3,a2成等差数列.(Ⅰ)求q的值;(Ⅱ)设{bn}是以2为首项,q为公差的等差数列,其前n项和为Sn,当n≥2时,比较Sn与bn的大小,并说明理由.参考答案:【考点】等差数列的前n项和.【分析】(1)由题意可知2a3=a1+a2,根据等比数列通项公式代入a1和q,进而可求得q.(II)讨论当q=1和q=﹣,时分别求得Sn和bn,进而根据Sn﹣bn与0的关系判断Sn与bn的大小,【解答】解:(1)由题意可知,2a3=a1+a2,即a(2q2﹣q﹣1)=0,∴q=1或q=﹣;(II)q=1时,Sn=2n+=,∵n≥2,∴Sn﹣bn=Sn﹣1=>0当n≥2时,Sn>bn.若q=﹣,则Sn=,同理Sn﹣bn=.∴2≤n≤9时,Sn>bn,n=10时,Sn=bn,n≥11时,Sn<bn.22.现有长分别为1m、2m、3m的钢管各3根(每根钢管质地均匀、粗细相同附有不同的编号),从中随机抽取2根(假设各钢管被抽取的可能性是均等的),再将抽取的钢管相接焊成笔直的一根.若X表示新焊成的钢管的长度(焊接误差不计).(1)求X的分布列;(2)若Y=﹣λ2X+λ+1,E(Y)>1,求实数λ的取值范围.参考答案:【分析】(1)X可能的取值为2,3,4,5,6.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论