广东省梅州市中兴中学2022-2023学年高二数学文期末试题含解析_第1页
广东省梅州市中兴中学2022-2023学年高二数学文期末试题含解析_第2页
广东省梅州市中兴中学2022-2023学年高二数学文期末试题含解析_第3页
广东省梅州市中兴中学2022-2023学年高二数学文期末试题含解析_第4页
广东省梅州市中兴中学2022-2023学年高二数学文期末试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省梅州市中兴中学2022-2023学年高二数学文期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知球O的表面积为16π,则球O的体积为A.

B.

C.

D.参考答案:D因为球O的表面积是16π,所以球O的半径为2,所以球O的体积为,故选D.

2.下列有关命题的说法正确的是()A.命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”B.“x=﹣1”是“x2﹣5x﹣6=0”的必要不充分条件C.命题“?x∈R,使得x2+x+1<0”的否定是:“?x∈R,均有x2+x+1<0”D.命题“若x=y,则sinx=siny”的逆否命题为真命题参考答案:D【考点】命题的否定;必要条件、充分条件与充要条件的判断.【分析】对于A:因为否命题是条件和结果都做否定,即“若x2≠1,则x≠1”,故错误.对于B:因为x=﹣1?x2﹣5x﹣6=0,应为充分条件,故错误.对于C:因为命题的否定形式只否定结果,应为?x∈R,均有x2+x+1≥0.故错误.由排除法即可得到答案.【解答】解:对于A:命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”.因为否命题应为“若x2≠1,则x≠1”,故错误.对于B:“x=﹣1”是“x2﹣5x﹣6=0”的必要不充分条件.因为x=﹣1?x2﹣5x﹣6=0,应为充分条件,故错误.对于C:命题“?x∈R,使得x2+x+1<0”的否定是:“?x∈R,均有x2+x+1<0”.因为命题的否定应为?x∈R,均有x2+x+1≥0.故错误.由排除法得到D正确.故答案选择D.3.设数列的前n项和为,若,则(

)A、

B、

C、

D、参考答案:D4.空间四边形ABCD中,若AB=AD=AC=BC=CD=BD,则AC与BD所成角为 (

)A.300 B.450 C.600 D.900参考答案:D略5.若圆的方程为(θ为参数),直线的方程为(t为参数),则直线与圆的位置关系是()A.相交过圆心 B.相交而不过圆心C.相切 D.相离参考答案:B【考点】J9:直线与圆的位置关系;QJ:直线的参数方程;QK:圆的参数方程.【分析】把圆的方程及直线的方程化为普通方程,然后利用点到直线的距离公式求出圆心到已知直线的距离d,判定发现d小于圆的半径r,又圆心不在已知直线上,则直线与圆的位置关系为相交而不过圆心.【解答】解:把圆的参数方程化为普通方程得:(x+1)2+(y﹣3)2=4,∴圆心坐标为(﹣1,3),半径r=2,把直线的参数方程化为普通方程得:y+1=3(x+1),即3x﹣y+2=0,∴圆心到直线的距离d==<r=2,又圆心(﹣1,3)不在直线3x﹣y+2=0上,则直线与圆的位置关系为相交而不过圆心.故选:B6.直线5x-2y-10=0在x轴上的截距为a,在y轴上的截距为b,则(

)A.a=2,b=5;

B.a=2,b=;

C.a=,b=5;

D.a=,b=.参考答案:A7.已知两点、,且是与的等差中项,则动点的轨迹方程是(

)A.

B.

C.

D.参考答案:C8.在△ABC中,三边a,b,c成等差数列,B=30°,三角形ABC的面积为,则b的值是()A.1+ B.2+ C.3+ D.参考答案:D【考点】三角形的面积公式;等差数列的性质.【分析】由等差数列的2b=a+c,由余弦定理可得b2=4b2﹣,再由面积公式可的,可得ac的值,联立可解得b值.【解答】解:∵三边a,b,c成等差数列,∴2b=a+c,又B=30°,∴由余弦定理可得b2=a2+c2﹣2accosB=,故b2=(a+c)2﹣=4b2﹣,①三角形ABC的面积S=,代入数据可得ac=2,②把②代入①可得3b2=2(2),解之可得b=故选D9.

执行如图所示的程序框图,输出的s值为()A.-3

B.-C.

D.2参考答案:D10.执行如下图所示的程序框图,如果输入的n是4,则输出的p是A.8

B.5

C.3

D.2参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.已知等差数列{an}中,有成立.类似地,在等比数列{bn}中,有成立.参考答案:略12.如图,在圆内接梯形ABCD中,AB∥DC,过点A作圆的切线与CB的延长线交于点E.若AB=AD=5,BE=4,则弦BD的长为.参考答案:【考点】与圆有关的比例线段;余弦定理.【分析】连结圆心O与A,说明OA⊥AE,利用切割线定理求出AE,通过余弦定理求出∠BAE的余弦值,然后求解BD即可.【解答】解:如图连结圆心O与A,因为过点A作圆的切线与CB的延长线交于点E.所以OA⊥AE,因为AB=AD=5,BE=4,梯形ABCD中,AB∥DC,BC=5,由切割线定理可知:AE2=EB?EC,所以AE==6,在△ABE中,BE2=AE2+AB2﹣2AB?AEcosα,即16=25+36﹣60cosα,所以cosα=,AB=AD=5,所以BD=2×ABcosα=.故答案为:.13.若函数在处取极值,则

参考答案:略14.双曲线的虚轴长是实轴长的2倍,则____________.参考答案:415.某同学由于求不出积分的准确值,于是他采用“随机模拟方法”和利用“积分的几何意义”来近似计算积分.他用计算机分别产生个在上的均匀随机数和个在上的均匀随机数,其数据记录为如下表的前两行.x2.501.011.901.222.522.171.891.961.362.22y0.840.250.980.150.010.600.590.880.840.10lnx0.920.010.640.200.920.770.640.670.310.80则依此表格中的数据,可得积分的一个近似值为

.参考答案:16.一物体沿着直线以v=2t+3

(t的单位:s,

v的单位:m/s)的速度运动,那么该物体在3~5s间行进的路程是

米。参考答案:22略17.已知,且,则的最大值为参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知中心在原点,左焦点为的椭圆的左顶点为,上顶点为,到直线的距离为.(1)求椭圆的方程;(2)若椭圆方程为:(),椭圆方程为:(,且),则称椭圆是椭圆的倍相似椭圆.已知是椭圆的倍相似椭圆,若直线与两椭圆、交于四点(依次为、、、),且,试求动点的轨迹方程.参考答案:解:(1)设椭圆方程为:(),所以直线方程为:∴到直线距离为……2分又,解得:,∴椭圆方程为:.

…………………4分(2)椭圆的倍相似椭圆的方程为:

………………5分设、、、各点坐标依次为、、、

将代人椭圆方程,得:

(*)

此时:,

将代人椭圆方程,得:

∴,………8分∴,可得线段、中点相同,所以由,所以,可得:∴(满足(*)式).∴动点的轨迹方程为.

……10分略19.求由曲线与,,所围成的平面图形的面积。(8分)参考答案:20.直角坐标系xOy中,直线l的参数方程为(t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点为极点,以x轴正半轴为极轴)中,圆C的方程为.(1)求圆C的直角坐标方程;(2)设圆C与直线l交于点A,B,若点P的坐标为(2,1),求的最小值.参考答案:(1);(2)。分析:(1)将两边同乘,根据直角坐标与极坐标的对应关系得出直角坐标方程;(2)将直线的参数方程代入圆的普通方程,根据参数的几何意义与根与系数的关系得出.详解:(1)由,化为直角坐标方程为,即(2)将l的参数方程带入圆C的直角坐标方程,得因为,可设,又因为(2,1)为直线所过定点,,,,所以点睛:本题考查了极坐标方程与直角坐标方程的转化,参数方程的几何意义与应用,属于基础题.21.经销商经销某种农产品,在一个销售季度内,每售出1t该产品获利润500元,未售出的产品,每1t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t该农产品.以x(单位:t,100≤x≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(Ⅰ)将T表示为x的函数;(Ⅱ)根据直方图估计利润T不少于57000元的概率;(Ⅲ)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若x∈[100,110))则取x=105,且x=105的概率等于需求量落入[100,110)的频率,求T的数学期望.参考答案:【考点】离散型随机变量的期望与方差;频率分布直方图;用样本的频率分布估计总体分布.【专题】概率与统计.【分析】(Ⅰ)由题意先分段写出,当x∈[100,130)时,当x∈[130,150)时,和利润值,最后利用分段函数的形式进行综合即可.(Ⅱ)由(I)知,利润T不少于57000元,当且仅当120≤x≤150.再由直方图知需求量X∈[120,150]的频率为0.7,利用样本估计总体的方法得出下一个销售季度的利润T不少于57000元的概率的估计值.(Ⅲ)利用利润T的数学期望=各组的区间中点值×该区间的频率之和即得.【解答】解:(Ⅰ)由题意得,当x∈[100,130)时,T=500x﹣300(130﹣x)=800x﹣39000,当x∈[130,150)时,T=500×130=65000,∴T=.(Ⅱ)由(Ⅰ)知,利润T不少于57000元,当且仅当120≤x≤150.由直方图知需求量X∈[120,150]的频率为0.7,所以下一个销售季度的利润T不少于57000元的概率的估计值为0.7.(Ⅲ)依题意可得T的分布列如图,T45000530006100065000p0.10.20.30.4所以ET=45000×0.1+53000×0.2+61000×0.3+65000×0.4=59400.【点评】本题考查用样本的频率分布估计总体分布及识图的能力,求解的重点是对题设条件及直方图的理解,了解直方图中每个小矩形的面积的意义,是中档题.22.(本题16分)如图,已知椭圆的上、下顶点分别为,点在椭圆上,且异于点,直线与直线分别交于点,(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论