版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年江苏省无锡市宜兴屺亭中学高二数学文联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若两个正实数x,y满足,且不等式有解,则实数m的取值范围是(
)A.(-4,1)B.(-1,4)C.(-∞,-1)∪(4,+∞)D.(-∞,0)∪(3,+∞)参考答案:C2.全集U=R集合M={x||x-|≤},P={x|-1≤x≤4},则等于A、{x|-4≤x≤-2}B、{x|-1≤x≤3}C、{x|3≤x≤4}D、{x|3<x≤4}参考答案:D3.对任意的实数,有,则等于(
)A.-12
B.-6
C.6
D.12参考答案:B4.设函数f(x)=,若f(a)=f(b)=f(c)=f(d),其中a,b,c,d互不相等,则对于命题p:abcd∈(0,1)和命题q:a+b+c+d∈[e+e﹣1﹣2,e2+e﹣2﹣2)真假的判断,正确的是()A.p假q真 B.p假q假 C.p真q真 D.p真q假参考答案:C【考点】2K:命题的真假判断与应用.【分析】画出函数f(x)=的图象,根据a,b,c,d互不相等,且f(a)=f(b)=f(c)=f(d),令a<b<c<d,根据对数的运算性质,及c,d的取值范围得到abcd的取值范围,再利用对勾函数的单调性求出a+b+c+d的范围得答案.【解答】解:作出函数f(x)=的图象如图,不妨设a<b<c<d,图中实线y=m与函数f(x)的图象相交于四个不同的点,由图可知m∈(﹣2,﹣1],则a,b是x2+2x﹣m﹣1=0的两根,∴a+b=﹣2,ab=﹣m﹣1,∴ab∈[0,1),且lnc=m,lnd=﹣m,∴ln(cd)=0,∴cd=1,∴abcd∈[0,1),故①正确;由图可知,c∈(],又∵cd=1,a+b=﹣2,∴a+b+c+d=c+﹣2,在(,]是递减函数,∴a+b+c+d∈[e+﹣2,e2+﹣2),故②正确.∴p真q真.故选:C.【点评】本题考查命题的真假判断与应用,考查对数函数图象与性质的综合应用,其中画出函数图象,利用图象的直观性,数形结合进行解答是解决此类问题的关键,是中档题.5.函数y=x+cosx的大致图象是(图中虚线是直线y=x)
(
)
参考答案:B6.正方体ABCD-A1B1C1D1的棱上到异面直线AB,CC1的距离相等的点的个数为
(
)A.2
B.3
C.4
D.5参考答案:C略7.设点,则“且”是“点在直线上”的 ()A.充分而不必要条件 B.必要而不充分条件
C.充分必要条件 D.既不充分也不必要条件参考答案:A8.如图,在长方体ABCD﹣A1B1C1D1中,AB=BC=2,AA1=1,则BC1与平面BB1D1D所成角的正弦值为()A. B. C. D.参考答案:D【考点】MI:直线与平面所成的角.【分析】由题意,由于图形中已经出现了两两垂直的三条直线所以可以利用空间向量的方法求解直线与平面所成的夹角.【解答】解:以D点为坐标原点,以DA、DC、DD1所在的直线为x轴、y轴、z轴,建立空间直角坐标系(图略),则A(2,0,0),B(2,2,0),C(0,2,0),C1(0,2,1)∴=(﹣2,0,1),=(﹣2,2,0),且为平面BB1D1D的一个法向量.∴cos<,>═=.∴BC1与平面BB1D1D所成角的正弦值为故答案为D.【点评】此题重点考查了利用空间向量,抓住直线与平面所成的角与该直线的方向向量与平面的法向量的夹角之间的关系这一利用向量方法解决了抽象的立体几何问题.9.设是两个任意事件,下面哪一个关系是正确的(
)A.
B. C.
D.
参考答案:C略10.锐角三角形的面积等于底乘高的一半;直角三角形的面积等于底乘高的一半;钝角三角形的面积等于底乘高的一半;所以,凡是三角形的面积都等于底乘高的一半.以上推理运用的推理规则是()A.三段论推理 B.假言推理 C.关系推理 D.完全归纳推理参考答案:D【考点】F5:演绎推理的意义.【分析】三角形可以分为锐角三角形、直角三角形、钝角三角形,故可得结论.【解答】解:三角形可以分为锐角三角形、直角三角形、钝角三角形,∴由锐角三角形的面积等于底乘高的一半;直角三角形的面积等于底乘高的一半;钝角三角形的面积等于底乘高的一半,得出凡是三角形的面积都等于底乘高的一半,是完全归纳推理.故选:D.【点评】本题考查完全归纳推理,考查学生分析解决问题的能力,属于中档题.二、填空题:本大题共7小题,每小题4分,共28分11.已知点,抛物线的焦点是,若抛物线上存在一点,使得最小,则最小值为__________;此时点的坐标为__________.参考答案:;.解:由抛物线定义,到到焦点的距离等于它到准线的距离,设点到准线的距离为,则所求的最小值,即为的最小值,当、、三点共线时,最小,∴最小值为到准线的距离此时最小值为,的纵坐标为,代入抛物线中,解出的横坐标为,得.12.数列的通项公式为,达到最小时,n等于_______________.参考答案:24略13.以极坐标系中的点为圆心,为半径的圆的直角坐标方程是
.参考答案:或
14.已知直线与平行,则
参考答案:3或515.若椭圆mx2+ny2=1(m>0,n>0)与直线y=1-x交于A、B两点,过原点与线段AB的中点的连线斜率为,则的值为________.参考答案:略16.如图,偶函数f(x)的图象如字母M,奇函数g(x)的图象如字母N,若方程f(g(x))=0,g(f(x))=0的实根个数分别为m、n,则m+n=
.参考答案:18【考点】函数奇偶性的性质.【分析】若方程f(g(x))=0,则g(x)=﹣,或g(x)=0,或g(x)=,进而可得m值;不妨仅g(x)的三个零点分别为﹣a,0,a(0<a<1),若g(f(x))=0,则f(x)=﹣a,或f(x)=0,或f(x)=a,进而得到n值.【解答】解:若方程f(g(x))=0,则g(x)=﹣,或g(x)=0,或g(x)=,此时方程有9个解;不妨仅g(x)的三个零点分别为﹣a,0,a(0<a<1)若g(f(x))=0,则f(x)=﹣a,或f(x)=0,或f(x)=a,此时方程有9个解;即m=n=9,∴m+n=18,故答案为:1817.已知向量a=(﹣1,x,3),b=(2,﹣4,y),且a∥b,那么x+y的值为_________.参考答案:-4略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知焦点在轴上的双曲线C的两条渐近线过坐标原点,且两条渐近线与以点
为圆心,1为半径的圆相切,又知C的一个焦点与A关于直线对称.(1)求双曲线C的方程;(2)设直线与双曲线C的左支交于A,B两点,另一直线经过M(-2,0)及AB的中点,求直线在轴上的截距b的取值范围.(12分)参考答案:解析:(1)当表示焦点为的抛物线;(2)当时,,表示焦点在x轴上的椭圆;(3)当a>1时,,表示焦点在x轴上的双曲线.(1设双曲线C的渐近线方程为y=kx,则kx-y=0∵该直线与圆相切,∴双曲线C的两条渐近线方程为y=±x.故设双曲线C的方程为.又双曲线C的一个焦点为,∴,.∴双曲线C的方程为:.(2)由得.令∵直线与双曲线左支交于两点,等价于方程f(x)=0在上有两个不等实根.因此,解得.又AB中点为,∴直线l的方程为:.令x=0,得.∵,∴,∴.
19.已知数列的前项和为,().(1)证明数列是等比数列,求出数列的通项公式;(2)设,求数列的前项和;参考答案:解:(Ⅰ)因为,所以,则,所以,
………………2分,所以数列是等比数列,
………………3分
,,所以.
………………5分(Ⅱ),
…………6分,………………7分令,①,②①-②得,,,
…………9分所以.
…………10分(Ⅲ)设存在,且,使得成等差数列,则,即,
…………12分即,,因为为偶数,为奇数,所以不成立,故不存在满足条件的三项.
………………14分略20.一缉私艇A发现在北偏东方向,距离12nmile的海面上有一走私船C正以10nmile/h的速度沿东偏南方向逃窜.缉私艇的速度为14nmile/h,若要在最短的时间内追上该走私船,缉私艇应沿北偏东的方向去追,.求追击所需的时间和角的正弦值.参考答案:设A,C分别表示缉私艇,走私船的位置,设经过小时后在B处追上,
则有,所以追击所需时间2小时,略21.设椭圆C:的左焦点为F,上顶点为A,过点A作垂直于AF的直线交椭圆C于另外一点P,交x轴正半轴于点Q,且(1)求椭圆C的离心率;(2)若过A、Q、F三点的圆恰好与直线:相切,求椭圆C的方程.参考答案:解:⑴设Q(x0,0),由F(-c,0) A(0,b)知设,得因为点P在椭圆上,所以整理得2b2=3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学音乐教案
- 弘扬传统文化开场演讲稿(10篇下载)
- 重庆市梁平区2023-2024学年四年级上学期语文期末试卷(含答案)
- 语文大专论述习作练习研究卷
- 语文要素的教学实施策略
- 财务代理工作合同
- 货物买卖及施工协议
- 质量保证书住房
- 购销合同买卖合同的税务处理
- 贷款合同协议书样本
- 小升初资料:《红楼梦》思维导图+考点汇总+习题(含答案)
- 饮用天然矿泉水检验方法
- DB51T 3153-2023 水库消落带保土截污植被构建技术规范
- 流行性传染病预防应急预案
- 1.1.1慢阻肺练习卷附答案
- 宇宙中的奇异现象黑洞和白洞
- 餐饮环境的灭鼠和杀虫措施
- 信息素养与信息技术教育培训
- 化工过程与电工技术基础知识
- 小学生电力科普小讲座(课件)-小学常识科普主题班会
- 金融理论与实务第六章
评论
0/150
提交评论