贵州省贵阳市德华中学高二数学文期末试卷含解析_第1页
贵州省贵阳市德华中学高二数学文期末试卷含解析_第2页
贵州省贵阳市德华中学高二数学文期末试卷含解析_第3页
贵州省贵阳市德华中学高二数学文期末试卷含解析_第4页
贵州省贵阳市德华中学高二数学文期末试卷含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

贵州省贵阳市德华中学高二数学文期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知条件p:x2﹣3x+2<0;条件q:|x﹣2|<1,则p是q成立的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件参考答案:A【考点】必要条件、充分条件与充要条件的判断.【分析】分别化简命题p,q,即可判断出结论.【解答】解:条件p:x2﹣3x+2<0,解得1<x<2;条件q:|x﹣2|<1,∴﹣1<x﹣2<1,解得1<x<3.则p是q成立的充分不必要条件.故选:A.2.若x∈(﹣∞,﹣1]时,不等式(m2﹣m)?4x﹣2x<0恒成立,则实数m的取值范围是()A.(﹣2,1) B.(﹣4,3) C.(﹣1,2) D.(﹣3,4)参考答案:C【考点】7J:指、对数不等式的解法.【分析】由题意可得(m2﹣m)<在x∈(﹣∞,﹣1]时恒成立,则只要(m2﹣m)<的最小值,然后解不等式可m的范围【解答】解:∵(m2﹣m)4x﹣2x<0在x∈(﹣∞,﹣1]时恒成立∴(m2﹣m)<在x∈(﹣∞,﹣1]时恒成立由于f(x)=在x∈(﹣∞,﹣1]时单调递减∵x≤﹣1,∴f(x)≥2∴m2﹣m<2∴﹣1<m<2故选C3.已知某几何体的三视图如图所示,则该几何体的表面积是()A.

B.C.

D.6

参考答案:C略4.等差数列中,时,则序号等于A.99 B.100 C.96 D.101参考答案:B略5.已知数列是等差数列,且,那么数列的前11项和等于(

)A.22

B.24

C.44

D.48参考答案:A6.已知函数y=f(x+1)定义域是,则y=f(2|x|﹣1)的定义域是(

) A. B. C. D.参考答案:C考点:函数的定义域及其求法.专题:探究型;函数的性质及应用.分析:根据复合函数的定义域,先求出f(x)的定义域即可.解答: 解:因为函数y=f(x+1)定义域是,所以﹣2≤x≤3,即﹣1≤x+1≤4.所以函数f(x)的定义域为.由﹣1≤2|x|﹣1≤4.得0≤2|x|≤5,解得﹣,即y=f(2|x|﹣1)的定义域为.故选C.点评:本题主要考查复合函数定义域的求法,要求熟练掌握复合函数定义域之间的关系.7.设集合U={1,2,3,4,5,6},A={1,2,3},B={2,3,4},则等于(

)A.{2,3}

B.{1,4,5}

C.{3,4,5,6}

D.{1,4,5,6}参考答案:D8.下列抛物线中,准线方程为的是(

)A.

B.

C.

D.参考答案:B9.曲线的极坐标方程化为直角坐标方程为(

)A

B

C

D参考答案:B10.设,若,则等于

A.

B.

C.

D.参考答案:B略二、填空题:本大题共7小题,每小题4分,共28分11.圆C1:x2+y2+2x+8y﹣8=0和圆C2:x2+y2﹣4x﹣5=0的位置关系为.参考答案:相交【考点】圆与圆的位置关系及其判定.【分析】求出圆的圆心与半径,利用圆心距与半径和与差的关系判断即可.【解答】解:由于圆C1:x2+y2+2x+8y﹣8=0,即(x+1)2+(y+4)2=25,表示以C1(﹣1,﹣4)为圆心,半径等于5的圆.圆C2:x2+y2﹣4x﹣5=0,即(x﹣2)2+y2=9,表示以C2(2,0)为圆心,半径等于3的圆.由于两圆的圆心距等于=5,大于半径之差而小于半径之和,故两个圆相交.故答案为相交.12.甲、乙、丙三位同学被问到是否去过、、三个城市时,

甲说:我去过的城市比乙多,但没去过城市;

乙说:我没去过城市;

丙说:我们三人去过同一城市;

由此可判断乙去过的城市为________.参考答案:A13.设x=-2与x=4是函数f(x)=x3+ax2+bx的两个极值点,则常数a-b的值为.参考答案:21∵f′(x)=3x2+2ax+b,∴?∴a-b=-3+24=21.14.已知函数,若关于x的方程f(x)﹣m+1=0恰有三个不等实根,则实数m的取值范围为.参考答案:【考点】54:根的存在性及根的个数判断.【分析】当x≤0时,=为(﹣∞,0]上的减函数,由函数的单调性求其最小值;当x>0时,利用导数研究函数的单调性并求得极值,画出简图,把关于x的方程f(x)﹣m+1=0恰有三个不等实根转化为y=f(x)与y=m﹣1的图象有3个不同交点,数形结合得答案.【解答】解:当x≤0时,=为(﹣∞,0]上的减函数,∴f(x)min=f(0)=0;当x>0时,f(x)=,f′(x)==.则x∈(,+∞)时,f′(x)<0,x∈(0,)时,f′(x)>0.∴f(x)在(,+∞)上单调递减,在(0,)上单调递增.∴f(x)的极大值为f()=.其大致图象如图所示:若关于x的方程f(x)﹣m+1=0恰有三个不等实根,即y=f(x)与y=m﹣1的图象有3个不同交点,则0<m﹣1<.得1<m<.∴实数m的取值范围为,故答案为:.【点评】本题考查根的存在性与根的个数判断,考查利用导数求函数的极值,体现了数形结合的解题思想方法,是中档题.15.已知椭圆和双曲线有公共的焦点,那么双曲线的渐近线方程为

。参考答案:16.曲线y=4x﹣x3在点(﹣1,﹣3)处的切线方程是

.参考答案:x﹣y﹣2=0【考点】6H:利用导数研究曲线上某点切线方程.【分析】欲求出切线方程,只须求出其斜率即可,故先利用导数求出在x=﹣1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:∵y=4x﹣x3,∴f'(x)=4﹣3x2,当x=﹣1时,f'(﹣1)=1得切线的斜率为1,所以k=1;所以曲线在点(﹣1,﹣3)处的切线方程为:y+3=1×(x+1),即x﹣y﹣2=0.故答案为:x﹣y﹣2=0.17.在的二项展开式中,常数项为

.参考答案:1215

三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.设抛物线y2=2px(p>0)的焦点为F,点,线段FA的中点在抛物线上.设动直线l:y=kx+m与抛物线相切于点P,且与抛物线的准线相交于点Q,以PQ为直径的圆记为圆C.(1)求p的值;(2)试判断圆C与x轴的位置关系;(3)在坐标平面上是否存在定点M,使得圆C恒过点M?若存在,求出M的坐标;若不存在,说明理由.参考答案:【考点】直线与圆锥曲线的综合问题.【分析】(1)由抛物线方程求出焦点坐标,再由中点坐标公式求得FA的中点,由中点在抛物线上求得pD的值;(2)联立直线方程和抛物线方程,由直线和抛物线相切求得切点坐标,进一步求得Q的坐标(用含k的代数式表示),求得PQ的中点C的坐标,求出圆心到x轴的距离,求出,由半径的平方与圆心到x轴的距离的平方差的符号判断圆C与x轴的位置关系;(3)法一、假设平面内存在定点M满足条件,设出M的坐标,结合(2)中求得的P,Q的坐标,求出向量的坐标,由恒成立求解点M的坐标.法二、由(2)中求出的P,Q的坐标求出PQ的中点坐标,得到以PQ为直径的圆的方程,利用方程对于任意实数k恒成立,系数为0列式求解x,y的值,从而得到顶点M的坐标.【解答】解:(1)利用抛物线的定义得,故线段FA的中点的坐标为,代入方程y2=2px,得,解得p=1;(2)由(1)得抛物线的方程为y2=2x,从而抛物线的准线方程为,由,得方程,由直线与抛物线相切,得,且,从而,即,由,解得,∴PQ的中点C的坐标为.圆心C到x轴距离,,∵=∵k≠0,∴当时,,圆C与x轴相切,当时,,圆C与x轴相交;(3)方法一、假设平面内存在定点M满足条件,由抛物线对称性知点M在x轴上,设点M坐标为M(x1,0),由(2)知,,,∴.由得,.∴,即或.∴平面上存在定点,使得圆C恒过点M.证法二、由(2)知,,PQ的中点C的坐标为..∴圆C的方程为.整理得.上式对任意k≠0均成立,当且仅当,解得.∴平面上存在定点,使得圆C恒过点M.19.已知数列{an}的前n项和Sn=2n2+n,n∈N*. (1)求{an}的通项公式; (2)若数列{bn}满足an=4log2bn+3,n∈N*,求数列{anbn}的前n项和Tn. 参考答案:【考点】数列的求和;数列递推式. 【专题】整体思想;综合法;等差数列与等比数列. 【分析】(1)根据an=解出; (2)求出bn,使用错位相减法求和. 【解答】解:(1)当n=1时,a1=S1=3; 当n≥2时,. 经检验,n=1时,上式成立. ∴an=4n﹣1,n∈N*. (2)∵an=4log2bn+3=4n﹣1,∴bn=2n﹣1. ∴,n∈N*. ∴,① ①×2得:,② ∴. 故. 【点评】本题考查了数列的通项公式的解法,数列求和,属于中档题. 20.在直角坐标系xOy中,曲线C1的参数方程为(为参数),以坐标原点为极点,以x轴正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为.(1)写出C1的普通方程和C2的直角坐标方程;(2)设点P在C1上,点Q在C2上,求的最小值以及此时P的直角坐标.参考答案:(1):,:;(2),此时.试题分析:(1)的普通方程为,的直角坐标方程为;(2)由题意,可设点的直角坐标为到的距离当且仅当时,取得最小值,最小值为,此时的直角坐标为.试题解析:(1)的普通方程为,的直角坐标方程为.(2)由题意,可设点的直角坐标为,因为是直线,所以的最小值即为到的距离的最小值,.当且仅当时,取得最小值,最小值为,此时的直角坐标为.考点:坐标系与参数方程.【方法点睛】参数方程与普通方程的互化:把参数方程化为普通方程,需要根据其结构特征,选取适当的消参方法,常见的消参方法有:代入消参法;加减消参法;平方和(差)消参法;乘法消参法;混合消参法等.把曲线的普通方程化为参数方程的关键:一是适当选取参数;二是确保互化前后方程的等价性.注意方程中的参数的变化范围.21.已知a=(sinx,-cosx),b=(cosx,cosx),函数f(x)=a·b+.(1)求f(x)的最小正周期,并求其图像对称中心的坐标;(2)当0≤x≤时,求函数f(x)的值域.参考答案:(1)f(x)=sinxcosx-cos2x+=sin2x-(cos2x+1)+=cos2x-cos2x=sin.所以f(x)的最小正周期为π.令sin=0,得2x-=kπ,∴x=π+,k∈Z.故所求对称中心的坐标为,(k∈Z).(2)∵0≤x≤,∴-≤2x-≤.∴-≤sin≤1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论