版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省襄阳市县第一中学高二数学文下学期摸底试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知数列的前n项和,若,则n的值等于(
)A.5
B.4 C.3
D.2参考答案:A2.如图,为测得河对岸塔AB的高,先在河岸上选一点C,使在C塔底B的正东方向上,测得点A的仰角为60°,再由点C沿北偏东15°方向走10米到位置D,测得∠BDC=45°,则塔高AB的高度为()A.10 B.10 C.10 D.10参考答案:D【考点】解三角形的实际应用.【分析】先在△ABC中求出BC,再△BCD中利用正弦定理,即可求得结论.【解答】解:设塔高AB为x米,根据题意可知在△ABC中,∠ABC=90°,∠ACB=60°,AB=x,从而有BC=x,AC=x在△BCD中,CD=10,∠BCD=60°+30°+15°=105°,∠BDC=45°,∠CBD=30°由正弦定理可得,=∴BC==10∴x=10∴x=故塔高AB=3.设的展开式的各项系数和为,二项式系数和为,若,则展开式中的系数为
(
)A.
B.
C.
D.参考答案:B4.若椭圆和双曲线有相同的焦点F1、F2,P是两曲线的交点,则的值是(
)A.
B.
C.
D.参考答案:D略5.设l,m是两条不同的直线,α是一个平面,则下列命题正确的是() A.若l⊥m,m在α内,则l⊥α B. 若l∥α,l∥m,则m∥α C.若l⊥α,l∥m,则m⊥α D. 若l⊥α,l⊥m,则m∥α参考答案:C略6.某几何体的三视图如图所示,则这个几何体的体积为()A.4
B.
C.
D.8参考答案:B7.命题1
长方体中,必存在到各顶点距离相等的点;
命题2
长方体中,必存在到各棱距离相等的点;
命题3
长方体中,必存在到各面距离相等的点。
以上三个命题中正确的有
(A)0个
(B)1个
(C)2个
(D)3个参考答案:B8.已知
(
)
A.
B.
C.
D.
参考答案:D9.若,且,则(
)A.
B.
C.或
D.或参考答案:C10.集合,则集合P∩Q的交点个数是(
)A.0个 B.1个 C.2个 D.3个参考答案:B【分析】在同一坐标系中,画出函数和的图象,结合图象,即可求解,得到答案。【详解】由题意,在同一坐标系中,画出函数和的图象,如图所示,由图象看出,和只有一个交点,所以的交点个为1,故选:B.【点睛】本题主要考查了集合的交集,以及指数函数与对数函数的图象的应用,其中解答中在同一坐标系中作出两个函数的图象是解答的关键,着重考查了数形结合法的应用,属于基础题。二、填空题:本大题共7小题,每小题4分,共28分11.如图所示,在直三棱柱ABC—A1B1C1中,底面是∠ABC为直角的等腰直角三角形,AC=2a,BB1=3a,D是A1C1的中点,点F在线段AA1上,当AF=________时,CF⊥平面B1DF.参考答案:a或2a略12.已知函数,则
.参考答案:2
13.在△ABC中,AB=3,BC=5,CA=7,点D是边AC上的点,且AD=DC,则·=________.参考答案:-14.设F1、F2为双曲线的两个焦点,点P在双曲线上,且满足∠F1PF2=60°,则△F1PF2的面积为.参考答案:9【考点】双曲线的简单性质.【分析】利用双曲线的简单性质、余弦定理列出方程组,求出PF1?PF2=36,由此能求出△F1PF2的面积.【解答】解:∵F1、F2是双曲线的两个焦点,P是此双曲线上的点,∠F1PF2=60°,不妨设PF1>PF2,∴,∴,整理,得PF1?PF2=36,∴△F1PF2的面积S==9.故答案为:915.已知,是不相等的正数,,,则,的大小关系是__________.参考答案:,,∵,∴,∵,,∴.16.若复数(m2-5m+6)+(m2-3m)i是纯虚数,则实数m=____________。参考答案:2略17.执行如图所示的程序框图,若输出的的值为,则图中判断框内①处应填(
)A.
B.
C.
D.
参考答案:B三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.用0,1,2,3,4,5这六个数字:(1)能组成多少个无重复数字的四位奇数?(2)能组成多少个无重复数字且比1325大的四位数?参考答案:(1)个…………6分(2)个…………12分19.(本小题满分12分)已知函数(1)当时,求的单调区间;(2)若对任意,恒成立,求实数的取值范围.参考答案:解:(1)当时,
·································································································2分
由得得
的单调递增区间为,单调递减区间为······························6分(2)若对任意时,恒成立,
即时,恒成立,·····································································7分
设,,即,
,
设,∴在上恒成立
在上单调递增即在上单调递增········································································9分
,在有零点在上单调递减,在上单调递增···········································10分,即,
12分20.在平面直角坐标系xOy中,以原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C1,C2的极坐标方程分别为ρ=2sinθ,ρcos(θ﹣)=.(Ⅰ)求C1和C2交点的极坐标;(Ⅱ)直线l的参数方程为:(t为参数),直线l与x轴的交点为P,且与C1交于A,B两点,求|PA|+|PB|.参考答案:【考点】QH:参数方程化成普通方程;Q4:简单曲线的极坐标方程.【分析】(Ⅰ)求出C1和C2的直角坐标方程,得出交点坐标,再求C1和C2交点的极坐标;(Ⅱ)利用参数的几何意义,即可求|PA|+|PB|.【解答】解:(Ⅰ)由C1,C2极坐标方程分别为ρ=2sinθ,’化为平面直角坐标系方程分为x2+(y﹣1)2=1,x+y﹣2=0.
…得交点坐标为(0,2),(1,1).
…即C1和C2交点的极坐标分别为.…(II)把直线l的参数方程:(t为参数),代入x2+(y﹣1)2=1,得,…即t2﹣4t+3=0,t1+t2=4,…所以|PA|+|PB|=4.…21.如图,长方体ABCD﹣A1B1C1D1中,AA1=,AB=1,AD=m,E为BC中点,且∠AEA1恰为二面角A1﹣ED﹣A的平面角.(1)求证:平面A1DE⊥平面A1AE;(2)求异面直线A1E、CD所成的角;(3)设△A1DE的重心为G,问是否存在实数λ,使得=λ,且MG⊥平面A1ED同时成立?若存在,求出λ的值;若不存在,说明理由.参考答案:【考点】直线与平面垂直的判定;异面直线及其所成的角.【专题】计算题;空间位置关系与距离.【分析】(1)根据二面角的平面角的定义,可得二面角的棱垂直于平面角所在的平面,得线面垂直,再由线面垂直?面面垂直.(2)建立空间直角坐标系,给出相关点与向量的坐标,根据AE⊥DE,求出m的值,再求向量夹角的余弦值.(3)根据=λ,写出M的坐标,求出的坐标,根据条件MG⊥DE,MG⊥EA1确定是否存在λ.【解答】解:(1)证明:∵∠AEA1为二面角A1﹣ED﹣A的平面角∴A1E⊥ED,AE⊥ED,A1E∩AE=E,∴ED⊥平面A1AE,DE?平面A1DE,∴平面A1DE⊥平面A1AE.(2)如图建立空间直角坐标系,则A(0,0,0),A1(0,0,),B(1,0,0),D(0,m,0),E(1,,0).=(1,,﹣),ED=(),AE=(),∵AE⊥ED,,即﹣1+=0?m=2,则C(1,2,0),=(﹣1,0,0),cos===,∴异面直线A1E、CD所成的角为60°.(3)依题意得:G(),=λ,∴M(0,2λ,0).=(,1﹣2λ,),假设存在λ满足题设条件,则,且,即,解得λ=,故存在实数λ=,使得=λ,且MG⊥平面A1ED同时成立.【点评】本题考查了利用向量坐标运算求异面直线所成的角,考查用向量法解决立体几何中的存在性问题,考查了学生的运算能力及逻辑推理能力
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 寿司餐馆服务行业营销策略方案
- 碳素材料细分市场深度研究报告
- 弹花齿条产业链招商引资的调研报告
- 危机管理培训行业相关项目经营管理报告
- 发行有价证券行业营销策略方案
- PET塑料瓶的回收利用行业营销策略方案
- 刻度机产品供应链分析
- 塑料加工机器产品供应链分析
- 声音和影像的数字化行业营销策略方案
- 装钓鱼假饵用盒商业机会挖掘与战略布局策略研究报告
- 医学美容技术专业《美容礼仪》课程标准
- 国能辽宁北票 200MW 风力发电项目地质灾害危险性评估报告
- 智慧医联体建设项目可行性研究报告
- 2024年中考英语题型复习:阅读理解(含练习题及答案)
- 2024-2030年中国农业机械产业发展格局与需求趋势预测研究报告
- DZ∕T 0214-2020 矿产地质勘查规范 铜、铅、锌、银、镍、钼(正式版)
- HYT 087-2005 近岸海洋生态健康评价指南
- 人教版五年级美术学科试卷(附带答案和考察要点解说)
- 士官生生涯规划
- (正式版)SHT 3158-2024 石油化工管壳式余热锅炉
- 内蒙古呼和浩特市回民区2023-2024学年七年级上学期期中语文试题
评论
0/150
提交评论