版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
解直角三角形的应用方向角问题50.(2023•通辽)如图,一艘海轮位于灯塔P的北偏东72°方向,距离灯塔100nmile的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东40°方向上的B处.这时,B处距离灯塔P有多远(结果取整数)?(参考数据:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)【答案】B处距离灯塔P约有148海里.【分析】根据题意可得:PC⊥AB,EF∥AB,从而可得∠A=∠EPA=72°,∠B=∠BFP=40°,然后在Rt△APC中,利用锐角三角函数的定义求出PC的长,再在Rt△BPC中,利用锐角三角函数的定义求出BP的长,即可解答.【解答】解:如图:由题意得:PC⊥AB,EF∥AB,∴∠A=∠EPA=72°,∠B=∠BFP=40°,在Rt△APC中,AP=100海里,∴PC=AP•sin72°≈100×0.95=95(海里),在Rt△BCP中,BP=PC∴B处距离灯塔P约有148海里.【点评】本题考查了解直角三角形的应用方向角问题,熟练掌锐角三角函数的定义是解题的关键.解直角三角形的应用方向角问题52.(2023•眉山)一渔船在海上A处测得灯塔C在它的北偏东60°方向,渔船向正东方向航行12海里到达点B处,测得灯塔C在它的北偏东45°方向,若渔船继续向正东方向航行,则渔船与灯塔C的最短距离是63+6【考点】解直角三角形的应用﹣方向角问题;勾股定理的应用.【分析】过点C作CH⊥AB于H.证得BH=CH,在Rt△ACH中,解直角三角形求出CH的值即可.【解答】解:过点C作CH⊥AB于H.∵∠DAC=60°,∠CBE=45°,∴∠CAH=90°﹣∠CAD=30°,∠CBH=90°﹣∠CBE=45°,∴∠BCH=90°﹣45°=45°=∠CBH,∴BH=CH,在Rt△ACH中,∠CAH=30°,AH=AB+BH=12+CH,tan30°=CH∴CH=33(12+解得CH=6(3−答:渔船与灯塔C的最短距离是6(3+故答案为:63+【点评】本题考查的是解直角三角形的应用﹣方向角问题,正确根据题意画出辅助线,熟练掌握锐角三角函数的概念是解题的关键.解直角三角形的应用方向角问题49.(2023•广安)为了美化环境,提高民众的生活质量,市政府在三角形花园ABC边上修建一个四边形人工湖泊ABDE,并沿湖泊修建了人行步道.如图,点C在点A的正东方向170米处,点E在点A的正北方向,点B、D都在点C的正北方向,BD长为100米,点B在点A的北偏东30°方向,点D在点E的北偏东58°方向.(1)求步道DE的长度;(2)点D处有一个小商店,某人从点A出发沿人行步道去商店购物,可以经点B到达点D,也可以经点E到达点D,请通过计算说明他走哪条路较近.(结果精确到个位)(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60,3≈【考点】解直角三角形的应用﹣方向角问题.【分析】(1)过D作DF⊥AE,垂足为F,根据题意可得:四边形ACDF是矩形,从而可得DF=AC=200米,然后在Rt△EFD中,利用锐角三角函数的定义进行计算,即可解答;(2)先在Rt△EFD中,利用锐角三角函数的定义求出EF的长,再在Rt△ABC中,利用锐角三角函数的定义求出AB,BC的长,从而求出DC的长,然后利用矩形的性质求出AF的长,从而求出AE的长,最后利用线段的和差关系进行计算,比较即可解答.【解答】解:(1)过D作DF⊥AE,垂足为F,由题意得:四边形ACDF是矩形,∴DF=AC=170米,在Rt△EFD中,∠DEF=58°,∴DE=DF∴步道DE的长度约为200米;(2)小红从A出发,经过点B到达点D路程较近,理由:在Rt△EFD中,∠DEF=58°,DF=170米,∴EF=DF在Rt△ABC中,∠BAC=90°﹣30°=60°,AC=170米,∴BC=AC•tan60°=1703(米),∴AB=170∵BD=100米,∴CD=BC+BD=(1703+∵四边形ACDF是矩形,∴AF=DC=(1703+∴AE=AF﹣EF=1703+∴某人从A出发,经过点B到达点D路程=AB+BD=340+100=440(米),某人从A出发,经过点E到达点D路程=AE+DE=287.8+283=570.8(米),∵440米<570.8米,∴小红从A出发,经过点B到达点D路程较近.【点评】本题考查了解直角三角形的应用﹣方向角问题,勾股定理的应用,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.50.(2023•重庆)人工海产养殖合作社安排甲、乙两组人员分别前往海面A,B养殖场捕捞海产品.经测量,A在灯塔C的南偏西60°方向,B在灯塔C的南偏东45°方向,且在A的正东方向,AC=3600米.(1)求B养殖场与灯塔C的距离(结果精确到个位);(2)甲组完成捕捞后,乙组还未完成捕捞,甲组决定前往B处协助捕捞,若甲组航行的平均速度为600米每分钟,请计算说明甲组能否在9分钟内到达B处?(参考数据:2≈1.414,3【考点】解直角三角形的应用﹣方向角问题;勾股定理的应用.【分析】(1)过点C作CD⊥AB于点D,在Rt△ACD中,解直角三角形求出AD,CD.在Rt△BCD中,解直角三角形即可求出BC;(2)求出AD,BD,进而求出AB,根据速度公式即可得到结论.【解答】解:(1)过点C作CD⊥AB于点D,在Rt△ACD中,∠ACD=60°,AC=3600米,cos60°=CDAC,sin60°∴AD=3600×32=18003(米),在Rt△BCD中,∠BCD=45°,∴∠B=45°=∠BCD,∴BD=CD=1800(米),∴BC=BD2答:B养殖场与灯塔C的距离约为2545米;(2)AB=AD+BD=18003+600×9=5400(米),∵5400米>4917.6米,∴能在9分钟内到达B处.【点评】本题考查了解直角三角形的应用﹣方向角问题,解答本题的关键是利用三角函数求出AD与BD的长度,难度一般.51.(2023•重庆)为了满足市民的需求,我市在一条小河AB两侧开辟了两条长跑锻炼线路,如图:①A﹣D﹣C﹣B;②A﹣E﹣B.经勘测,点B在点A的正东方,点C在点B的正北方10千米处,点D在点C的正西方14千米处,点D在点A的北偏东45°方向,点E在点A的正南方,点E在点B的南偏西60°方向.(参考数据:2≈1.41,3(1)求AD的长度.(结果精确到1千米)(2)由于时间原因,小明决定选择一条较短线路进行锻炼,请计算说明他应该选择线路①还是线路②?【考点】解直角三角形的应用﹣方向角问题;勾股定理的应用.【分析】(1)过D作DF⊥AE,垂足为F,根据题意可得:四边形ABCF是矩形,从而可得AF=BC=10千米,然后在Rt△AFD中,利用锐角三角函数的定义进行计算,即可解答;(2)先在Rt△ADF中,根据等腰三角形的判定求出AF的长,再在Rt△ABE中,利用锐角三角函数的定义求出AB,AE的长,最后利用线段的和差关系进行计算,比较即可解答.【解答】解:(1)过D作DF⊥AE,垂足为F,由题意得:四边形ABCF是矩形,∴AF=BC=10千米,在Rt△ADF中,∠DAF=45°,∴AD=AFsin45°=∴AD的长度约为14千米;(2)小明应该选择线路①,理由:在Rt△ADF中,∠DAF=45°,AF=10千米,∴∠ADF=45°=∠DAF,∴DF=AF=10千米,在Rt△ABE中,∠ABE=90°﹣60°=30°,AB=DF+CD=24千米,∴AE=AB•tan30°=24×33=EB=2AE=163千米,按路线①A﹣D﹣C﹣B走的路程为AD+DC+CB=14+14+10=38(千米)按路线②A﹣E﹣B走的路程为AE+EB=83+163∵38千米<41.52千米,∴小明应该选择线路①.【点评】本题考查了解直角三角形的应用﹣方向角问题,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.解直角三角形的应用方向角问题52.(2023•聊城)东昌湖西岸的明珠大剧院,隔湖与远处的角楼、城门楼、龙堤、南关桥等景观遥相呼应.如图所示,城门楼B在角楼A的正东方向520m处,南关桥C在城门楼B的正南方向1200m处.在明珠大剧院P测得角楼A在北偏东68.2°方向,南关桥C在南偏东56.31°方向(点A,B,C,P四点在同一平面内),求明珠大剧院到龙堤BC的距离(结果精确到1m)(参考数据:sin68,2°≈0.928,cos68.2°≈0.371,tan68.2°≈2.50,sin56.31°≈0.832,cos56.31°≈0.555,tan56.31°≈1.50)【答案】明珠大剧院到龙堤BC的距离约为1320m.【分析】过P作PE⊥BC于E,过A作AD⊥PE于D,根据矩形的性质得到DE=AB=520m,设PD=xm,解直角三角形即可得到结论.【解答】解:过P作PE⊥BC于E,过A作AD⊥PE于D,则四边形ADEB是矩形,∴DE=AB=520m,设PD=xm,在Rt△APD中,∵∠PAD=68.2°,∴AD=PDtan68.2°∴BE=AD=x2.5∴PE=PD+DE=(x+520)m,CE=BC﹣BE=(1200−2x5)在Rt△PCE中,tanC=tan56.31°=PE解得x=800,∴PD=800m,∴PE=PD+DE=800+520=1320(m),答:明珠大剧院到龙堤BC的距离约为1320m.【点评】本题考查了解直角三角形的应用﹣方向角问题,矩形的判定和性质,正确地作出辅助线构造直角三角形是解题的关键,53.(2023•郴州)某次军事演习中,一艘船以40km/h的速度向正东航行,在出发地A测得小岛C在它的北偏东60°方向,2小时后到达B处,浏得小岛C在它的北偏西45°方向,求该船在航行过程中与小岛C的最近距离(参考数据:2≈1.41,3≈1.73.结果精确到0.1【答案】该船在航行过程中与小岛C的最近距离为29.2海里.【分析】由题意得,AB=40×2=80(海里),∠CAB=30°,∠ABC=45°,过C作CD⊥AB于D,解直角三角形即可得到结论.【解答】解:由题意得,AB=40×2=80(海里),∠CAB=30°,∠ABC=45°,过C作CD⊥AB于D,∴∠ADC=∠BDC=90°,∴AD=3∵AB=80海里,∴3CD+CD=80,解得CD=403−答:该船在航行过程中与小岛C的最近距离为29.2海里.【点评】本题考查解直角三角形应用﹣方向角问题、勾股定理的应用等知识,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.解直角三角形的应用方向角问题54.(2023•株洲)如图所示,在某交叉路口,一货车在道路①上点A处等候“绿灯”,一辆车从被山峰POQ遮挡的道路②的点B处由南向北行驶.已知∠POQ=30°,BC∥OQ,OC⊥OQ,AO⊥OP,线段AO的延长线交直线BC于点D.(1)求∠COD的大小;(2)若在点B处测得点O在北偏西α方向上,其中tanα=35,OD=12米.问该轿车至少行驶多少米才能发现点A处的货车?(当该轿车行驶至点D处时,正好发现点【答案】(1)30°;(2)24米.【分析】(1)根据垂直的定义得到∠POD=90°,根据三角形的内角和定理得到∠DOQ=∠POD﹣∠POQ=90°﹣30°=60°,根据垂直的定义得到∠COQ=90°,于是得到结论;(2)根据平行线的性质得到∠BCO=180°﹣∠COQ=90°,解直角三角形即可得到结论.【解答】解:(1)∵AO⊥OP,∴∠POD=90°,∵∠POQ=30°,∴∠DOQ=∠POD﹣∠POQ=90°﹣30°=60°,∵OC⊥OQ,∴∠COQ=90°,∴∠COD=∠COQ﹣∠DOQ=90°﹣60°=30°,即∠COD的大小为30°;(2)∵BC∥OQ,∴∠BCO=180°﹣∠COQ=90°,在Rt△COD中,∠COD=30°,OD=12米,∴CD=1∴OC=OD2∵tanα=tan∠OBC=3∴BC=OC∴BD=BC﹣CD=30﹣6=24(米),即轿车至少行驶24米才能发现点A处的货车.【点评】此题主要考查了解直角三角形的应用﹣方向角问题,平行线的性质,正确地求出结果是解题关键.解直角三角形的应用方向角问题57.(2023•内蒙古)为了增强学生体质、锤炼学生意志,某校组织一次定向越野拉练活动.如图,A点为出发点,途中设置两个检查点,分别为B点和C点,行进路线为A→B→C→A.B点在A点的南偏东25°方向32km处,C点在A点的北偏东80°方向,行进路线AB和BC所在直线的夹角∠ABC为45°.(1)求行进路线BC和CA所在直线的夹角∠BCA的度数;(2)求检查点B和C之间的距离(结果保留根号).【答案】(1)行进路线BC和CA所在直线的夹角∠BCA的度数为60°;(2)检查点B和C之间的距离(3+3)km【分析】(1)根据题意可得:∠NAC=80°,∠BAS=25°,从而利用平角定义可得∠CAB=75°,然后利用三角形内角和定理进行计算即可解答;(2)过点A作AD⊥BC,垂足为D,在Rt△ABD中,利用锐角三角函数的定义求出AD和BD的长,再在Rt△ADC中,利用锐角三角函数的定义求出CD的长,然后利用线段的和差关系进行计算,即可解答.【解答】解:(1)由题意得:∠NAC=80°,∠BAS=25°,∴∠CAB=180°-∠NAC-∠BAS=75°,∵∠ABC=45°,∴∠ACB=180°-∠CAB-∠ABC=60°,∴行进路线BC和CA所在直线的夹角∠BCA的度数为60°;(2)过点A作AD⊥BC,垂足为D,在Rt△ABD中,AB=32km,∠ABC=45°,∴AD=AB•sin45°=32×22BD=AB•cos45°=32×22在Rt△ADC中,∠ACB=60°,CD=ADtan60°=∴BC=BD+CD=(3+3)km∴检查点B和C之间的距离(3+3)km【点评】本题考查了解直角三角形的应用方向角问题,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.解直角三角形的应用坡度坡角问题44.(2023•连云港)渔湾是国家“AAAA”级风景区,图1是景区游览的部分示意图.如图2,小卓从九孔桥A处出发,沿着坡角为48°的山坡向上走了92m到达B处的三龙潭瀑布,再沿坡角为37°的山坡向上走了30m到达C处的二龙潭瀑布.求小卓从A处的九孔桥到C处的二龙潭瀑布上升的高度DC为多少米?(结果精确到0.1m)(参考数据:sin48°≈0.74,cos48°≈0.67,sin37°≈0.60,cos37°≈0.80)【考点】解直角三角形的应用﹣坡度坡角问题.菁优网版权所有【分析】过点B作BE⊥AD,作BF⊥CD,分别在Rt△ABE和Rt△CBF中分别解三角形求出BE,CF的长,二者相加就是CD的长.【解答】解:如图,过点B作BE⊥AD于E,在Rt△ABE中,sin∠BAE=BE∴BE=ABsin∠BAE=92×sin48°≈92×0.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2019版广西师范版 高中体育与健康 必修 10~12年级下篇 《第一章 健康行为的养成》大单元整体教学设计2020课标
- 《课电机正反转》课件
- 《级ACCESS数据库》课件
- 主题活动吃火锅真暖和
- 三年级数学五千以内加减混合两步运算题竞赛考核练习题
- 妇女节主题班队活动
- 危重患者突发事件应急处理
- 知觉的整体性微电影分库周欣然
- 住院病案首页数据质量评分表
- 医疗废物培训
- 天津市塘沽第二中学2024-2025学年七年级上学期期中考试数学试卷(无答案)
- 语文-重庆市2025年普通高等学校招生全国统一考试11月调研试卷(康德卷)试题和答案
- DB43T 2635-2023 大口径涂塑复合钢管通 用技术要求
- 初中一年级上学期数学《一元一次方程的应用-行程问题》课件
- 企业乒乓球活动外聘教练协议
- 人工智能与颈椎图像识别:应用前景与挑战
- 2024-2025部编版语文一年级上册语文园地八
- 一把手讲安全领导力与执行力考核试卷
- 租赁公司财务制度
- 2024-2030年祛痘化妆品行业市场深度分析及发展策略研究报告
- 医疗责任险行业研究报告
评论
0/150
提交评论