




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
等边三角形的性质26.(2023•凉山州)如图,边长为2的等边△ABC的两个顶点A、B分别在两条射线OM、ON上滑动,若OM⊥ON,则OC的最大值是1+3.【考点】等边三角形的性质.【分析】取AB的中点D,连接OD及DC,根据三角形的三边关系得到OC小于等于OD+DC,只有当O、D及C共线时,OC取得最大值,最大值为OD+CD,由等边三角形的边长为2,根据D为AB中点,得到BD为1,根据三线合一得到CD垂直于AB,在直角三角形BCD中,根据勾股定理求出CD的长,在直角三角形AOB中,OD为斜边AB上的中线,根据直角三角形斜边上的中线等于斜边的一半可得OD等于AB的一半,由AB的长求出OD的长,进而求出DC+OD,即为OC的最大值.【解答】解:取AB中点D,连OD,DC,∴OC≤OD+DC,当O、D、C共线时,OC有最大值,最大值是OD+CD,∵△ABC为等边三角形,D为AB中点,∴BD=1,BC=2,∴CD=B∵△AOB为直角三角形,D为斜边AB的中点,∴OD=12∴OD+CD=1+3,即OC的最大值为1+故答案为:1+3【点评】本题考查了等边三角形的性质,涉及直角三角形斜边上的中线等于斜边的一半,勾股定理,其中找出OC最大时的长为CD+OD是解本题的关键.等边三角形的性质37.(2023•滨州)已知点P是等边△ABC的边BC上的一点,若∠APC=104°,则在以线段AP,BP,CP为边的三角形中,最小内角的大小为()A.14° B.16° C.24° D.26°【答案】B【分析】过点P作PD∥AB交AC于点D,过点PE∥AC交AB于点E,四边形AEPD为平行四边形,根据平行线的性质易得△CDP为等边三角形,△BEP为等边三角形,则CP=DP=AE,BP=EP,因此△AEP就是以线段AP,BP,CP为边的三角形,求出△AEP的三个内角即可求解.【解答】解:如图,过点P作PD∥AB交AC于点D,过点PE∥AC交AB于点E,则四边形AEPD为平行四边形,∴DP=AE,∵△ABC为等边三角形,∴∠B=∠C=∠BAC=60°,∵PD∥AB,∴∠CPD=∠B=60°,∠CDP=∠BAC=60°,∴△CDP为等边三角形,∴CP=DP=CD,∴CP=DP=AE,∵PE∥AC,∴∠BEP=∠BAC=60°,∠BPE=∠C=60°,∴△BEP为等边三角形,∴BP=EP=BE,∴△AEP就是以线段AP,BP,CP为边的三角形,∵∠APC=104°,∴∠APB=180°﹣∠APC=76°,∴∠APE=∠APB﹣∠BPE=16°,∠PAE=∠APC﹣∠B=44°,∠AEP=180°﹣∠BEP=120°,∴以线段AP,BP,CP为边的三角形的三个内角分别为16°、44°、120°,∴最小内角的大小为16°.故选:B.【点评】本题主要考查等边三角形的判定与性质、平行四边形的判定与性质、平行线的性质、三角形外角性质,根据题意正确画出图形,推理论证得到△AEP就是以线段AP,BP,CP为边的三角形是解题关键.等边三角形的性质32.(2023•荆州)如图,BD是等边△ABC的中线,以D为圆心,DB的长为半径画弧,交BC的延长线于E,连接DE.求证:CD=CE.【答案】见解析.【分析】根据等边三角形的性质得到BD⊥AC,∠ACB=60°,求得∠DBC=30°,根据等腰三角形的性质得到∠E=∠DBC=30°,求得∠E=∠2=30°,根据等腰三角形的判定定理即可得到结论.【解答】证明:∵BD是等边△ABC的中线,∴BD⊥AC,∠ACB=60°,∴∠DBC=30°,∵BD=DE,∴∠E=∠DBC=30°,∵∠CDE+∠E=∠ACB=60°,∴∠E=∠2=30°,∴CD=CE.【点评】本题考查了等边三角形的性质,等腰三角形的判定和性质,熟练掌握等边三角形的性质是解题的关键.等边三角形的性质22.(2023•武汉)如图,DE平分等边△ABC的面积,折叠△BDE得到△FDE,AC分别与DF,EF相交于G,H两点.若DG=m,EH=n,用含m,n的式子表示GH的长是m2+【答案】m2【分析】根据等边三角形的性质得到∠A=∠B=∠C=60°,根据折叠的性质得到△BDE≌△FDE,根据已知条件得到图形ACED的面积=S△BDE=S△FDE,求得S△FHG=S△ADG+S△CHE,根据相似三角形的判定和性质定理即可得到结论.【解答】解:∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,∵折叠△BDE得到△FDE,∴△BDE≌△FDE,∴S△BDE=S△FDE,∠F=∠B=60°=∠A=∠C,∵DE平分等边△ABC的面积,∴图形ACED的面积=S△BDE=S△FDE,∴S△FHG=S△ADG+S△CHE,∵∠AGD=∠FGH,∠CHE=∠FHG,∴△ADG∽△FHG,△CHE∽△FHG,∴S△ADGS△FHG∴S△ADG∴GH2=m2+n2,解得GH=m2+n故答案为:m2【点评】本题考查了等边三角形的性质,折叠的性质,相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.等边三角形的性质36.(2023•武威)如图,BD是等边△ABC的边AC上的高,以点D为圆心,DB长为半径作弧交BC的延长于点E,则∠DEC=()A.20° B.25° C.30° D.35°【考点】等边三角形的性质.菁优网版权所有【分析】根据等边三角形的性质可得∠ABC=60°,根据等边三角形三线合一可得∠CBD=30°,再根据作图可知BD=ED,进一步可得∠DEC的度数.【解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 旅游行业出行安全免责声明书
- 渔业资源养护与利用协议
- 厨房装修合同
- 社区文化在物业教育服务中的体现
- 班级德育工作与科技融合的
- 海洋经济区产业合作开发协议
- 林地租赁合同协议书
- 幼儿园小班故事手工征文
- 2025年客运用车项目合作计划书
- 科技企业中的结构化团队管理与协作文化
- 办公室压力缓解方法
- 销售序列学习成长地图2021
- 我的家乡湖北荆门介绍
- 遮瑕(美容化妆技术课件)
- 不锈钢金属边框施工方案
- 民企与央企合作协议
- 浅析幼儿户外自主游戏中教师的观察与指导策略
- 医院一站式服务中心建设实施方案
- GB/T 42828.2-2023盐碱地改良通用技术第2部分:稻田池塘渔农改良
- (完整版)离婚协议书标准版下载
- 新人教版八年级数学下册全册教案-八年级下册人教版全册教案
评论
0/150
提交评论