数学建模案例(二):曼哈顿距离 高一下学期数学湘教版(2019)必修第二册_第1页
数学建模案例(二):曼哈顿距离 高一下学期数学湘教版(2019)必修第二册_第2页
数学建模案例(二):曼哈顿距离 高一下学期数学湘教版(2019)必修第二册_第3页
数学建模案例(二):曼哈顿距离 高一下学期数学湘教版(2019)必修第二册_第4页
数学建模案例(二):曼哈顿距离 高一下学期数学湘教版(2019)必修第二册_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第6章

数学建模数学建模案例(二):曼哈顿距离了解曼哈顿距离,掌握建立数学模型的方法以及模型求解的方法.(数学建模)一、问题背景

曼哈顿距离也叫出租车距离,出租车司机计算从一个位置到另一个位置的距离,通常直接用街区的两个坐标分别相减,再相加,这个结果就是他即将开车通过的街区数量,而完全没有必要用两点间的距离公式来求解.

曼哈顿距离中的距离计算公式比欧氏距离的计算公式看起来简洁很多,只需要把两个点坐标的横坐标相减取绝对值,纵坐标相减取绝对值,再加和.

从曼哈顿距离的概念来说,只能上、下、左、右四个方向进行移动,而且两点之间的曼哈顿距离是两点之间的最短距离(在只能向上、下、左、右四个方向进行移动的前提下).为什么呢?假设从一点到达另一点(只能向上、下、左、右四个方向进行移动,下同),要使路程最短,就只能每一步都有用(使之与另一点的南北距离或东西距离缩短).

二、问题解析

2.模型的进一步讨论

在实际生活中,还有许多的问题可以归结为基于曼哈顿距离的数学模型来求解.以设置机器零件检验台的位置为例来说明.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论