版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年濉溪县重点达标名校中考数学适应性模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1.关于x的不等式的解集为x>3,那么a的取值范围为()A.a>3 B.a<3 C.a≥3 D.a≤32.如图所示,某公司有三个住宅区,A、B、C各区分别住有职工30人,15人,10人,且这三点在一条大道上(A,B,C三点共线),已知AB=100米,BC=200米.为了方便职工上下班,该公司的接送车打算在此间只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A.点A B.点B C.A,B之间 D.B,C之间3.满足不等式组的整数解是()A.﹣2 B.﹣1 C.0 D.14.如图是正方体的表面展开图,则与“前”字相对的字是()A.认 B.真 C.复 D.习5.下列因式分解正确的是()A. B.C. D.6.下列图形中,是中心对称图形,但不是轴对称图形的是()A. B.C. D.7.如图,在△ABC中,AC的垂直平分线分别交AC、BC于E,D两点,EC=4,△ABC的周长为23,则△ABD的周长为()A.13 B.15 C.17 D.198.如果与互补,与互余,则与的关系是()A. B.C. D.以上都不对9.如图,在△ABC中,∠ACB=90°,∠ABC=60°,BD平分∠ABC,P点是BD的中点,若AD=6,则CP的长为()A.3.5 B.3 C.4 D.4.510.在数轴上标注了四段范围,如图,则表示的点落在()A.段① B.段② C.段③ D.段④二、填空题(本大题共6个小题,每小题3分,共18分)11.今年我市初中毕业暨升学统一考试的考生约有35300人,该数据用科学记数法表示为________人.12.如图,在平面直角坐标系中有一正方形AOBC,反比例函数经过正方形AOBC对角线的交点,半径为()的圆内切于△ABC,则k的值为________.13.如图,AC是正五边形ABCDE的一条对角线,则∠ACB=_____.14.如图所示,直线y=x+1(记为l1)与直线y=mx+n(记为l2)相交于点P(a,2),则关于x的不等式x+1≥mx+n的解集为__________.15.若关于x的方程kx2+2x﹣1=0有实数根,则k的取值范围是_____.16.如图,△ABC内接于⊙O,AB是⊙O的直径,点D在圆O上,BD=CD,AB=10,AC=6,连接OD交BC于点E,DE=______.三、解答题(共8题,共72分)17.(8分)在平面直角坐标系xOy中,一次函数的图象与y轴交于点,与反比例函数
的图象交于点.求反比例函数的表达式和一次函数表达式;若点C是y轴上一点,且,直接写出点C的坐标.18.(8分)在平面直角坐标系中,二次函数y=x2+ax+2a+1的图象经过点M(2,-3)。(1)求二次函数的表达式;(2)若一次函数y=kx+b(k≠0)的图象与二次函数y=x2+ax+2a+1的图象经过x轴上同一点,探究实数k,b满足的关系式;(3)将二次函数y=x2+ax+2a+1的图象向右平移2个单位,若点P(x0,m)和Q(2,n)在平移后的图象上,且m>n,结合图象求x0的取值范围.19.(8分)P是外一点,若射线PC交于点A,B两点,则给出如下定义:若,则点P为的“特征点”.当的半径为1时.在点、、中,的“特征点”是______;点P在直线上,若点P为的“特征点”求b的取值范围;的圆心在x轴上,半径为1,直线与x轴,y轴分别交于点M,N,若线段MN上的所有点都不是的“特征点”,直接写出点C的横坐标的取值范围.20.(8分)九年级学生到距离学校6千米的百花公园去春游,一部分学生步行前往,20分钟后另一部分学生骑自行车前往,设(分钟)为步行前往的学生离开学校所走的时间,步行学生走的路程为千米,骑自行车学生骑行的路程为千米,关于的函数图象如图所示.(1)求关于的函数解析式;(2)步行的学生和骑自行车的学生谁先到达百花公园,先到了几分钟?21.(8分)某商场销售一批名牌衬衫,平均每天可以销售20件,每件盈利40元,为了扩大销售,增加利润,尽量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫降价1元,商场平均每天多售出2件,若商场平均每天要盈利1200元,每件衬衫应降价多少元?22.(10分)解不等式组并在数轴上表示解集.23.(12分)已知一个口袋中装有7个只有颜色不同的球,其中3个白球,4个黑球.(1)求从中随机抽取出一个黑球的概率是多少?(2)若往口袋中再放入x个白球和y个黑球,从口袋中随机取出一个白球的概率是14,求y与x24.如图,在菱形ABCD中,作于E,BF⊥CD于F,求证:.
参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】分析:先解第一个不等式得到x>3,由于不等式组的解集为x>3,则利用同大取大可得到a的范围.详解:解不等式2(x-1)>4,得:x>3,解不等式a-x<0,得:x>a,∵不等式组的解集为x>3,∴a≤3,故选D.点睛:本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.2、A【解析】
此题为数学知识的应用,由题意设一个停靠点,为使所有的人步行到停靠点的路程之和最小,肯定要尽量缩短两地之间的里程,就用到两点间线段最短定理.【详解】解:①以点A为停靠点,则所有人的路程的和=15×100+10×300=1(米),②以点B为停靠点,则所有人的路程的和=30×100+10×200=5000(米),③以点C为停靠点,则所有人的路程的和=30×300+15×200=12000(米),④当在AB之间停靠时,设停靠点到A的距离是m,则(0<m<100),则所有人的路程的和是:30m+15(100﹣m)+10(300﹣m)=1+5m>1,⑤当在BC之间停靠时,设停靠点到B的距离为n,则(0<n<200),则总路程为30(100+n)+15n+10(200﹣n)=5000+35n>1.∴该停靠点的位置应设在点A;故选A.【点睛】此题为数学知识的应用,考查知识点为两点之间线段最短.3、C【解析】
先求出每个不等式的解集,再根据不等式的解集求出不等式组的解集即可.【详解】∵解不等式①得:x≤0.5,解不等式②得:x>-1,∴不等式组的解集为-1<x≤0.5,∴不等式组的整数解为0,故选C.【点睛】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集找出不等式组的解集是解此题的关键.4、B【解析】分析:由平面图形的折叠以及正方体的展开图解题,罪域正方体的平面展开图中相对的面一定相隔一个小正方形.详解:由图形可知,与“前”字相对的字是“真”.故选B.点睛:本题考查了正方体的平面展开图,注意正方体的空间图形,从相对面入手分析及解答问题.5、C【解析】
依据因式分解的定义以及提公因式法和公式法,即可得到正确结论.【详解】解:D选项中,多项式x2-x+2在实数范围内不能因式分解;
选项B,A中的等式不成立;
选项C中,2x2-2=2(x2-1)=2(x+1)(x-1),正确.
故选C.【点睛】本题考查因式分解,解决问题的关键是掌握提公因式法和公式法的方法.6、A【解析】分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,即可判断出答案.详解:A、此图形是中心对称图形,不是轴对称图形,故此选项正确;B、此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形是中心对称图形,也是轴对称图形,故此选项错误;D、此图形不是中心对称图形,是轴对称图形,故此选项错误.故选A.点睛:此题主要考查了中心对称图形与轴对称的定义,关键是找出图形的对称中心与对称轴.7、B【解析】∵DE垂直平分AC,∴AD=CD,AC=2EC=8,∵C△ABC=AC+BC+AB=23,∴AB+BC=23-8=15,∴C△ABD=AB+AD+BD=AB+DC+BD=AB+BC=15.故选B.8、C【解析】
根据∠1与∠2互补,∠2与∠1互余,先把∠1、∠1都用∠2来表示,再进行运算.【详解】∵∠1+∠2=180°∴∠1=180°-∠2又∵∠2+∠1=90°∴∠1=90°-∠2∴∠1-∠1=90°,即∠1=90°+∠1.故选C.【点睛】此题主要记住互为余角的两个角的和为90°,互为补角的两个角的和为180度.9、B【解析】
解:∵∠ACB=90°,∠ABC=60°,∴∠A=10°,∵BD平分∠ABC,∴∠ABD=∠ABC=10°,∴∠A=∠ABD,∴BD=AD=6,∵在Rt△BCD中,P点是BD的中点,∴CP=BD=1.故选B.10、C【解析】试题分析:1.21=2.32;1.31=3.19;1.5=3.44;1.91=4.5.∵3.44<4<4.5,∴1.5<4<1.91,∴1.4<<1.9,所以应在③段上.故选C考点:实数与数轴的关系二、填空题(本大题共6个小题,每小题3分,共18分)11、3.53×104【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数,35300=3.53×104,故答案为:3.53×104.12、1【解析】试题解析:设正方形对角线交点为D,过点D作DM⊥AO于点M,DN⊥BO于点N;设圆心为Q,切点为H、E,连接QH、QE.∵在正方形AOBC中,反比例函数y=经过正方形AOBC对角线的交点,∴AD=BD=DO=CD,NO=DN,HQ=QE,HC=CE,QH⊥AC,QE⊥BC,∠ACB=90°,∴四边形HQEC是正方形,∵半径为(1-2)的圆内切于△ABC,∴DO=CD,∵HQ2+HC2=QC2,∴2HQ2=QC2=2×(1-2)2,∴QC2=18-32=(1-1)2,∴QC=1-1,∴CD=1-1+(1-2)=2,∴DO=2,∵NO2+DN2=DO2=(2)2=8,∴2NO2=8,∴NO2=1,∴DN×NO=1,即:xy=k=1.【点睛】此题主要考查了正方形的性质以及三角形内切圆的性质以及待定系数法求反比例函数解析式,根据已知求出CD的长度,进而得出DN×NO=1是解决问题的关键.13、36°【解析】
由正五边形的性质得出∠B=108°,AB=CB,由等腰三角形的性质和三角形内角和定理即可得出结果.【详解】∵五边形ABCDE是正五边形,∴∠B=108°,AB=CB,∴∠ACB=(180°﹣108°)÷2=36°;故答案为36°.14、x≥1【解析】
把y=2代入y=x+1,得x=1,∴点P的坐标为(1,2),根据图象可以知道当x≥1时,y=x+1的函数值不小于y=mx+n相应的函数值,因而不等式x+1≥mx+n的解集是:x≥1,故答案为x≥1.【点睛】本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.15、k≥-1【解析】
首先讨论当时,方程是一元一次方程,有实数根,当时,利用根的判别式△=b2-4ac=4+4k≥0,两者结合得出答案即可.【详解】当时,方程是一元一次方程:,方程有实数根;当时,方程是一元二次方程,解得:且.综上所述,关于的方程有实数根,则的取值范围是.故答案为【点睛】考查一元二次方程根的判别式,注意分类讨论思想在解题中的应用,不要忽略这种情况.16、1【解析】
先利用垂径定理得到OD⊥BC,则BE=CE,再证明OE为△ABC的中位线得到,入境计算OD−OE即可.【详解】解:∵BD=CD,∴,∴OD⊥BC,∴BE=CE,而OA=OB,∴OE为△ABC的中位线,∴,∴DE=OD-OE=5-3=1.故答案为1.【点睛】此题考查垂径定理,中位线的性质,解题的关键在于利用中位线的性质求解.三、解答题(共8题,共72分)17、(1)y=,y=-x+1;(2)C(0,3+1)或C(0,1-3).【解析】
(1)依据一次函数的图象与轴交于点,与反比例函数的图象交于点,即可得到反比例函数的表达式和一次函数表达式;(2)由,可得:,即可得到,再根据,可得或,即可得出点的坐标.【详解】(1)∵双曲线过,将代入,解得:.∴所求反比例函数表达式为:.∵点,点在直线上,∴,,∴,∴所求一次函数表达式为.(2)由,可得:,∴.又∵,∴或,∴,或,.【点睛】本题考查了待定系数法求反比例函数、一次函数的解析式和反比例函数与一次函数的交点问题.此题难度适中,注意掌握数形结合思想的应用.18、(1)y=x2-2x-3;(2)k=b;(3)x0<2或x0>1.【解析】
(1)将点M坐标代入y=x2+ax+2a+1,求出a的值,进而可得到二次函数表达式;(2)先求出抛物线与x轴的交点,将交点代入一次函数解析式,即可得到k,b满足的关系;(3)先求出平移后的新抛物线的解析式,确定新抛物线的对称轴以及Q的对称点Q′,根据m>n结合图像即可得到x0的取值范围.【详解】(1)把M(2,-3)代入y=x2+ax+2a+1,可以得到1+2a+2a+1=-3,a=-2,因此,二次函数的表达式为:y=x2-2x-3;(2)y=x2-2x-3与x轴的交点是:(3,0),(-1,0).当y=kx+b(k≠0)经过(3,0)时,3k+b=0;当y=kx+b(k≠0)经过(-1,0)时,k=b.(3)将二次函数y=x2-2x-3的图象向右平移2个单位得到y=x2-6x+5,对称轴是直线x=3,因此Q(2,n)在图象上的对称点是(1,n),若点P(x0,m)使得m>n,结合图象可以得出x0<2或x0>1.【点睛】本题主要考查二次函数的图像和性质,熟练掌握这些知识点是解题的关键.19、(1)①、;②(2)或,.【解析】
据若,则点P为的“特征点”,可得答案;根据若,则点P为的“特征点”,可得,根据等腰直角三角形的性质,可得答案;根据垂线段最短,可得PC最短,根据等腰直角三角形的性质,可得,根据若,则点P为的“特征点”,可得答案.【详解】解:,,点是的“特征点”;,,点是的“特征点”;,,点不是的“特征点”;故答案为、如图1,在上,若存在的“特征点”点P,点O到直线的距离.直线交y轴于点E,过O作直线于点H.因为.在中,可知.可得同理可得.的取值范围是:如图2,设C点坐标为,直线,.,,,..,线段MN上的所有点都不是的“特征点”,,即,解得或,点C的横坐标的取值范围是或,.故答案为:(1)①、;②(2)或,.【点睛】本题考查一次函数综合题,解的关键是利用若,则点P为的“特征点”;解的关键是利用等腰直角三角形的性质得出OE的长;解的关键是利用等腰直角三角形的性质得出,又利用了.20、;(2)骑自行车的学生先到达百花公园,先到了10分钟.【解析】
(1)根据函数图象中的数据可以求得关于的函数解析式;(2)根据函数图象中的数据和题意可以分别求得步行学生和骑自行车学生到达百花公园的时间,从而可以解答本题.【详解】解:(1)设关于的函数解析式是,,得,即关于的函数解析式是;(2)由图象可知,步行的学生的速度为:千米/分钟,步行同学到达百花公园的时间为:(分钟),当时,,得,,答:骑自行车的学生先到达百花公园,先到了10分钟.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 云计算建设项目服务合同
- 事业单位与员工停薪留职合同范本
- 个人车位交易合同范例
- 个人企业房屋租赁合同模板
- 个人车库使用权转让合同
- 个人财产保管合同范本
- 中小学教师聘用合同范本
- 业务合作合同范例
- 个人土地承包经营权合同书样本
- 产品定制与采购合同
- 苏州2025年江苏苏州太仓市高新区(科教新城娄东街道陆渡街道)招聘司法协理员(编外用工)10人笔试历年参考题库附带答案详解
- 搞笑小品剧本《大城小事》台词完整版
- 物业服务和后勤运输保障服务总体服务方案
- 人大代表小组活动计划人大代表活动方案
- 《大模型原理与技术》全套教学课件
- 2023年护理人员分层培训、考核计划表
- 《销售培训实例》课件
- 2025年四川省新高考八省适应性联考模拟演练(二)地理试卷(含答案详解)
- 【经典文献】《矛盾论》全文
- Vue3系统入门与项目实战
- 2024年宁夏回族自治区中考英语试题含解析
评论
0/150
提交评论