2022-2023学年高一数学 人教A版2019必修第一册 同步讲义 第18讲 对数及对数式运算5大常考题型总结 含解析_第1页
2022-2023学年高一数学 人教A版2019必修第一册 同步讲义 第18讲 对数及对数式运算5大常考题型总结 含解析_第2页
2022-2023学年高一数学 人教A版2019必修第一册 同步讲义 第18讲 对数及对数式运算5大常考题型总结 含解析_第3页
2022-2023学年高一数学 人教A版2019必修第一册 同步讲义 第18讲 对数及对数式运算5大常考题型总结 含解析_第4页
2022-2023学年高一数学 人教A版2019必修第一册 同步讲义 第18讲 对数及对数式运算5大常考题型总结 含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第18讲对数及对数式运算5大常考题型总结

【考点分析】

考点一:对数式的运算

①对数的定义:一般地,如果,=N(">O且αwl),那么数X叫做以。为底N的对数,记作

x=loguN,读作以。为底N的对数,其中。叫做对数的底数,N叫做真数.

②常见对数的写法:

1.一般对数:以。(。>0且αwl)为底,记为log:,读作以“为底N的对数;

2.常用对数:以10为底,记为IgN;

3.自然对数:以e为底,记为InM;

③对数的性质:

1.特殊对数:log:=。;log:=l;其中α>0且4wl

2.对数恒等式:"喈=N(其中α>0且4≠1,N>0)

3.对数换底公式:log,=譬也如:logs7=瞥I=黑=罟.

log,αIog25Ig5In7

倒数原理:log/=rL如:∙og32=--!—.

∣0giaIog23

约分法则:log,,O∙logjbc=log“c

④对数的运算法则:

M

1.logβ(MN)=IoguM+IogaN-2.log„—=logπM-log„N;

17

3.1ogb"=-Iogb(ιn,neR)4.金以"=6和logah=h.

amfli

【题型目录】

题型一:对数的定义

题型二:指数对数的互化

题型三:对数的运算求值

题型四:换底公式的应用

题型五:对数式的应用题

【典型例题】

题型一:对数的定义

【例1】(2021•全国高一课前预习)在人=1。&34W(3-24)中,实数”的取值范围为.

23

【答案】12

3,33,2

3a-l>0

【解析】由题意,要使式子6=1。团3启)(3-2。)有意义,则满足∙3α-l≠l,

3-2a>0

解得或即实数〃的取值范围为d[0d).故答案为:

【题型专练】

I.(2022江苏省江阴市第一中学高一期中)使式子log(3i)(3-x)有意义的X的取值范围是

()

112

A.x>3B.x<3C.-VX<3D.一<x<3且x≠-

333

【答案】D

【分析】对数函数中,底数大于0且不等于1,真数大于0,列出不等式,求出尢的取值范

围.

3x-l>0

12

【详解】由题意得:3犬-1≠1,解得:-<x<3>x≠-.

33

3-x>0

故选:D

2.(2022全国•高一课时练习)若1。即+*)(1-外有意义,则实数k的取值范围是.

【答案】(To)U(0,1)

【分析】结合对数性质建立不等关系,即可求解.

l+⅛>0

【详解】若iog("")(ιτ)有意义,则满足1+壮1,解得&e(τo)5°,1)∙

l-⅛>0

故答案为:(T,0)U(0,l)

题型二:指数对数的互化

【例1】(2022全国高一专题练习)将下列指数式化为对数式,对数式化为指数式.

2

(1)53=125;(2)4-=—;(3)Iog3-5-=-3.

1627

【答案】(DIog5125=3;(2)log4-⅛=-2;(3)37=L

162/

32

【解析】(I)V5=125,Λlog5l25=3.(2)':4-=^-,Λlog4-^=-2.

1616

(3)*.*ɪogɜ—=-3,33=—

32727

【题型专练】

1.(2022全国高一课前预习)把下列指数式化为对数式,对数式化为指数式.

(1)2-=:;

O

⑵(3)/

(3)lg--=-3.

Iooo

【答案】(I)log」=_3;(2)1°g∣⅛=α.(3)10-3=*

^871000

【解析】(1)由2-3=J可得log,=_3:

OO

(2)由(1=b得l°gj”;

(3)由1g」一=-3可得KT'=」一.

10001000

2.(2022全国高一课时练习)指数式和对数式互相转化:

(I)/=〃=____________.(2)33=—•=>

(3)Iog2ɪ=-4=>.(4)Iog28=3=>.

43

【答案】Ina=4Iog3—=-32~——2=8

【解析Iah=N<=>b=IOgaN(a>0,a≠1,2V>0).故答案为:]∏α=4,Iog--——3,2江=—,

32716

23=8.

题型三:对数的运算求值

【例1】(2022•浙江•高考真题)已知2"=5,log83=b,则平3=()

255

A.25B.5C.D.

93

【答案】C

【分析】根据指数式与对数式的互化,幕的运算性质以及对数的运算性质即可解出.

【详解】因为,25

2"=5⅛=10g83=^log23即236=3,所以4〃厘

^9^

故选:C.

【例2】(2022陕西.长安一中高一期中)设函数小)="?2(2-X),X<1,则

2Λ^,,Λ≥1

/(-2)∙/(Iog26)=()

A.3B.6C.9D.12

【答案】C

【分析】根据给定分段函数直接计算即可得解

【详解】函数则—+bg-M-=

所以A-2)∙∕(log26)=9.

故选:C

【例3】(2022全国高一专题练习)计算:(1)Iog625-Iog53-Iog96=

(2)(Iog25+Iog40.2)(Iog52+Iog250.5)=.

⑶log⅛log^-1°g5∣=---------------

(4)(log23+Iog49+Iog827+L+Iogy3")■Iog9\/32=.

⑸log6(√2+√3+72-√3)=-----------------

【答案】1;-12mg

2

【解析】(1)J⅛jζ=Iog65∙Iog53-ɪogɜ,6=2Iog65-log,3×ɪIog36=Iog65∙log,3∙log,6

=lg5⅛3lgðɪɪ

ɪg6lg5Ig3

⑵原式=Iog25+log,log,2+log,"∣=log,√5∙log,√2

1,u1,Cl

=-∙θg25×-lθg52=-

32

(3)原式=log?5-2.log?2"∙log,3^=-2Iog25×(-3)log,2×(-2)Iog53

=-12Iog25Iog32Iog53=-12

23π

(4)=(log23+Iog223+log2,3+L+log2,,3)∙Iogv√?

工55

,

=(log23+log23+log23+L+Iog23)∙logʒ,2'=ΛIog23×—logj22=-

2

(5)Q21og6(√2+√3+√2-√3)=log6(√2+√3+√2-√3)=Iog66=I

所以原式g

故答案为:1,ɪ>—12,ɪ,ɪ

42/

【例4】(2022•全国•高一课时练习)已知log”"/…∙⅛∣)=5,则

IoguX:+IogIl后+…+log„X篇=•

【答案】10

【分析】由同底数对数加法公式以及log“N'=引og"N,可得答案.

【详解】因为log„(V⅛∙∙∙¾∣)=5.所以IogeX;+log"考+…+log,,⅛2∣

=Iogn储∙W....⅛)=2log,,(XlX2-X202l)=IO.

故答案为:10.

【例5】(2022•陕西•西安市雁塔区第二中学高二期末(文))计算:

l.lo+e,"2-0.5^2+lg25+21g2=

【答案】1

【分析】根据指数的运算以及对数的运算性质即可求出.

【详解】原式=l+2-4+2(lg5+lg2)=-1+2=1.

故答案为:1.

21

【例6】(2021•江苏省沐阳高级中学高一期中)已知x>O,y>O,且Ig2'+lg8>=lg2,则一+一

χy

的最小值为.

【答案】5+2√6

21(91A

【分析】由lg2'+lg8''=lg2可得x+3y=1,则7+=++化简后利用基本不等

式可求得答案

【详解】因为Ig2"lg8'=lg2,所以Ig(2'・8,)=lg2"3,=ig2,

所以x+3y=l,

因为x>0,y>0,

所以2+∙L=[2+∙l]α+3y)

Xy∖χy)

=2+=+3

Xy

≥5+2也∙±=5+2屈,

VXy

当且仅当"=二即X=遥-2,y=匕色时取等号,,

Xy3

2I.L

所以一+一的最小值为5+2指,

故答案为:5+2C

【题型专练】

1.(2020全国卷I)设。厩4=2,则4一"二()

【答案】B

ɔ11

【详解】因αlog34=log34"=2,所以4"=32=9,故4-"=%=上

2.(2022.陕西・宝鸡市渭滨区教研室高二期末(文))若"X)=:八,则〃0)+/(16)=

[log2x(x>1)

【答案】5

【分析】根据给定的分段函数,直接代值计算作答.

【详解】因函数/(x)=F(X"),,所以"0)+"16)=3°+log,16=l+4=5.

.log2x(x>1)

故答案为:5

3.(2022长沙市明德中学高一开学考试)计算:lg√5+2啕3+bg2」+J12+inl=____

162

【答案】~~

【解析】原式=fg5+3-4+警+0=J(lg5+lg2)-1=-;.故答案为:一;

20fo2

4.(2022・江苏・高一)i+M(lg2)+lg21g5+lg5-3-'=

【答案】ɪ

【分析】利用对数运算及指数式与对数式互化计算作答

911

【详解】0g2)-+lg2Ig5+lg5-3-幅2=]g2Qg2+Ig5)+lg5-(3陶2)T=lg2+lg5-]=].

故答案为:y

log(-x+4),x<2

6.(2022•陕西•交大附中模拟预测(理))设函数/(X)=2则

2Λ,X>2

/(-4)+∕(log25)=()

A.5B.6C.7D.8

【答案】D

【分析】根据给定的分段函数,判断自变量取值区间,再代入计算作答.

log(-x+4),Λ<2

【详解】因2屋5<23,则2<1%5<3而f(x)=2

2x,x>2

所以/(7)+/(1唯5)=10氏(4+4)+2喝5=3+5=8.

故选:D

7.(2022江苏高二课时练习)若α>(),b>0,∖ga+∖gb=∖g(a+2h),则2α+h的最小

值为()

A.9B.8C.7D.6

【答案】A

【详解】因lgα+Igb=Ig(α+2⅛),所以Igab=Ig(α+2b),所以加=a+»,所以

a+2h

ab

log48J

8.(2022全国高一课时练习)if>:2≈+3,°'-Ig3∙Iog32-Ig5=

【答案】4

【解析】原式=4+3°-lg3∙譬一lg5=4+lTg2-lg5=4.

Ig3

故答案为:4.

9.(2022全国高一课时练习)计算:2(lg0)'+lg√Llg5+加研=

【答案】1

【解析】原式=lg&(21ga+lg5)+J(lg&y-21ga+l

2

=lg√2(lg2+lg5)+^(lg√2-l)

=lg√2+∣lg√2-l∣

=Ig√2+1-Ig√2

=1>

故答案为:1.

题型四:换底公式的应用

【例1】(2022•全国•高一课时练习)已知5"=3,3ft=2,贝∣J∣ogJ0-M=()

A.1B.2C.5D.4

【答案】A

【分析】先求得。力,然后结合对数运算求得正确答案.

a

【详解】,•*5=3f3'=2,「・。=bg53,b=Iog32,

log,↑0-ab=Iog5IO-Iog,3×log,2=Iog5IO-Iog53×=log,IO-Iog52=Iog55=1.

ɪθgʒ3

故选:A

【例2】(2022全国高一课时练习)设2"=5〃="?,H-+γ=2,则机=()

ab

A.√wB.10C.20D.100

【答案】A

【解析】由2"=5"=m,可得α=log2^,b=Iog5m,

由换底公式得一=Iog,“2,-=Iog5,

abm

所以一+7=Iogw2+Iogw5=Iogw10=2,

又因为m>G,∏f得m=VFo.

故选:A.

【例3】(2022•全国•高一课时练习)己知。=怆2,⅛=lg3,∣U!jlog365=()

2a+2b2-2a

a+b2a+Ib

【答案】D

【分析】利用对数的运算法则及性质进行运算可得答案.

【详解】因为α=lg2,⅛=lg3,所以

一JIg5l-lg2l-a

36Ig362(lg2+lg3)2a+2b'

故选:D.

【例4】(2022・天津・高考真题)化简(21og43+log83)(log32+log92)的值为()

A.1B.2C.4D.6

【答案】B

【分析】根据对数的性质可求代数式的值.

【详解】原式=(2Xglog23+glog23)(log32+^Iog12)

43

=-1θg23×21°g32=2'

故选:B

【例5】(2021・江苏・高一专题练习)若实数。、b、C满足25"=403"=2015。=2019,则下

列式子正确的是

—I—=一

ahc

【答案】A

【分析】由指数式化对数式,然后利用换底公式得出ɪ=log,0195,ɪ=Iog90l5403,

2ab

1I22

-=Iog2015,利用对数的运算性质和2015=5x403可得出一+不=—成立.

c2019abc

【详解】由己知,得52"=403"=2015'=2019,得2G=Iog52019,⅛=Iog4032019,

2

c=log,015019,所以!=log,5,ɪ=Iog2019403,ɪ=Iog20192015,

2abc

而5x403=2015,则log20195+Iog2019403=Iog20192015,

所以4+∖=1,即~+τ=~-

2abcabc

故选A.

【题型专练】

rf

1.(2022湖南•长沙麓山国际实验学校高一开学考试)己知⅛>0,log5⅛=aJg⅛=c,5=10,

则下列等式一定成立的是()

A.d=acB.a=cdC.c=abD.d=a+c

【答案】B

【分析】根据对数运算法则,以及指对互化,即可判断选项.

【详解】log.b=a,Igb=c,两式相除得塔^=q,logJO=q,又5"=10,;.log,10=d,所

Tgbcc

以d=q=>cd=a.

c

故选:B.

2.(2022湖北黄石•高一期中)已知。>方>1,若IOg,/+log∕=∣M=凡则α+2Z>=

【答案】8

【分析】利用指数函数、对数函数的性质、运算法则直接求解.

【详解】解:由Iog"b+k‰”=(,且IOg(J6∙log/=1

所以∣og',"log”a是方程χ2-BX+1=0的两根,

解得ɪɑg*。=2或IOgz,a=g,

y^a>b>l,所以log∕=2,HlJ又aO=b"

从而b2b=b"=>a=2b,且α=/,则匕=2,a=4.

所以4+以=8.

故答案为:8.

3.(2021・上海高一专题练习)已知log32=m,用含〃2的式子表示Iog32l8=.

7M+2

【答案】

5m

r∕g*c1。“18-岷18_1叫2+1%9—1%2+2/+2m+2

【解析】10g321d-∙;-------;---^5-------=-----丁一二一.故答案为:——

IOg332Iog325Iog32Sm5m

4.(2022•陕西•交大附中模拟预测(理))若2"=3'=机,且!+9=2,则机=____________

ab

【答案】√6

【分析】由2"=3"=〃?,UJ得。=Iog?"1,b=∖og,m,m>0,从而利用换底公式及对数的

运算性质即可求解.

【详解】解:因为2"=3"=机,所以α=l0g2m,⅛=log,m,m>0,又,+:=2,

ab

所以,+4=+=l°g"2+k‰3=log”,(2X3)=2,

abIog2mIog3tn

所以加=6,所以"2=ʌ/ð>

故答案为:瓜.

5.(2022.全国•高一单元测试)把满足Iog23xlog34x…xlog,向(〃+2),〃eN”为整数的"叫

作“贺数”,则在区间(1,50)内所有“贺数”的个数是.

【答案】4

【分析】利用换底公式计算可得Iog23xlog34χ…χlog,用(〃+2)=log2(〃+2),即可判断.

【详解】解:因为Iog23χlog34x…XIOg向(〃+2)

喂喂…黑斗智—2),

Xlog24=2,Iog28=3,Iog216=4,log232=5,Iog264=6,

所以当“+2=4,8,16,32时,log1"+2)为整数,

所以在区间。,50)内“贺数”的个数是4.

故答案为:4

6.若a/均为不等于1的正数,且满足α"'=√2,^=〃,且a=Sb,则

1n

------1—=_____.

2m2

【答案】3

【详解】因所以加=log,,JL因出=b2,所以"=logJ2=Tog2^,所

2

1-log,b121ogɔb..,,a

—.........7τ+—彳一=-----------ɪ=Iog2tz-log2⅛=Iog2-,因为α=88,所以

21ogu√22Iogn22b

Iog2=Iog98=3

b

题型五:对数式的应用题

【例1】在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足

吗-明=IIg去,其中星等为恤的星的亮度为&(A=1,2).已知太阳的星等是-26.7,天

狼星的星等是

-1.45,则太阳与天狼星的亮度的比值为()

A.10'°lB.10.1C.lglθ.l

D.IO-'0'

【答案】A

【详解】设太阳的星等为町=-26.7,对应的亮度为骂,天狼星的星等为m2=T.45,对

应的亮度为E2,

5E5E5EE

则由,“一叫=共含得-1.45+26.7=RgU,即彳IgU=2525,所以IgU=IO.1,所以

2E,2E22t,E,

【例2】(2020•全国m)Logistic模型是常用数学模型之一,可应用于流行病学领域.有学者

根据公

布数据建立了某地区新冠肺炎累计确诊病例数/Q)(f的单位:天)的LogiStiC模型:

ΛO=y-其

中K为最大确诊病例数.当/(C=O.95K时,标志着已初步遏制疫情,则r*约为(Inl9*3)

()

A.60B.63C.66D.69

【答案】C

【详解】由题意知-~~《E=°∙95K,所以;~∕E=°95,即

l+∕ft23S-53)=-L=W2=型,所以]>汹*-53)=_1,所以ine"MT3)=ln',即

0.9595191919

-0.23(/*-53)=-3,所以t*-53=3-αl3,所以产266

—0.23

【例3】(2021•全国甲卷文)青少年视力是社会普遍关注的问题,视力情况可借助视力表测

量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L和小数记录法

的数据V满足L=5+lgk已知某同学视力的五分记录法的数据为4.9,则其视力的小数

记录法的数据约为(TVlU≈1.259)()

A.1.5B.1.2C.0.8D.0.6

【答案】C

【详解】由题意知5+lgV=4.9,所以IgV=-0.1BPV10,a0.8

="=⅛=W≈1.259

【例4】(2022.全国.模拟预测)地震震级是根据地震仪记录的地震波振幅来测定的,一般

采用里氏震级标准.里氏震级(仞)是用距震中100千米处的标准地震仪所记录的地震波的

最大振幅的对数值来表示的.里氏震级的计算公式为M=IgA-1虱,其中A是被测地震的最

大振幅,4是“标准地震”的振幅(使用标准地震振幅是为了修正测震仪距实际震中的距离

造成的偏差).根据该公式可知,2021年7月28日发生在美国阿拉斯加半岛以南91公里处

的8.2级地震的最大振幅约是2021年8月4日发生在日本本州近岸5.3级地震的最大振幅的

()倍(精确到1).(参考数据:10(MB2.512,1005B3,162,1。2屋631)

A.794B.631C.316D.251

【答案】A

【分析】将阿拉斯加半岛的震幅A和II本本州近岸5.3级地震的震幅&表示成指数形式,

作商即可.

AA

【详解】由题意"=1驶-IgA)=Ig丁,即丁=Io",则A=A

当M=8.2时,地震的最大振幅A=A)/OS)

当M=5.3时,地震的最大振幅A?=AJO"',

所以A=A4。=IO29=IO04×10°5×102≈2.512×3.162×1∞≈794,

A24∙1θ

即Aa794Λ;

故选:A.

【例5】(2022.辽宁・抚顺市第二中学三模)一热水放在常温环境下经过f分钟后的温度T

将合公式:T-Z其中,是环境温度,丸为热水的初始温度,力称为半衰

期.一杯85℃的热水,放置在25℃的房间中,如果热水降温到55℃,需要10分钟,则一

杯100°C的热水放置在25。C的房间中,欲降温到55℃,大约需要多少分钟?()

(lg2≈0.3010,lg3≈0.4771)

A.11.3B.13.2C.15.6D.17.1

【答案】B

【分析】依题意求出半衰期3再把^的值代入利用换底公式计算,即可求出结果.

【详解】解:根据题意,55-25=(芋(85-25),即(1=g,解得∕z=10,

.•.55-25=(,(100-25),即f

由I、Ifɪ2lg521g2-l2x0.3010-1....

π用lT以一=Iogl-=-7-=------=-----------------≈1.322,

105511-Ig2-0.3010

02

所以f≈13∙2;

故选:B

【题型专练】

L(2022∙吉林一中高二阶段练习(理))深度学习是人工智能的一种具有代表性的实现方法,

它是以神经网络为出发点的.在神经网络优化中,指数衰减的学习率模型为L=ZIvDV,其

中L表示每一轮优化时使用的学习率,4表示初始学习率,。表示衰减系数,G表示训练

迭代轮数,Go表示衰减速度.已知某个指数衰减的学习率模型的初始学习率为0.5,衰减速

度为18,且当训练迭代轮数为18时,学习率衰减为0.4,则学习率衰减到0.1以下(不含

0∙l)所需的训练迭代轮数至少为(参考数据:lg2=0.3010)()

A.128B.130C.132D.134

【答案】B

【分析】由已知可得。=4],再由0.5x(*4∣ɑ8<0∙l,结合指对数关系及对数函数的性质求解

即可.

IOΛ

【详解】由题设,0.5W=O.4,则。三,

4ɑ-1181g518(1Tg2)

所以0.5x(-)*<0.1,即G>181ogq£=:≈129.7

5W5Ig5-21g2l-31g2

所以所需的训练迭代轮数至少为130次.

故选:B

2.(2022•内蒙古包头•二模(理))在天文学中,天体的明暗程度可以用星等或亮度来描述.两

5E

颗星的星等与亮度满足S-叫=5怆启,其中星等为"的星的亮度为线(左=1,2)∙已知星

A的星等是-3.5,星B的星等是-1.5,则星A与星B的亮度的比值为()

44c55

a∙IO5b∙IO5c∙IO3d∙IO-W

【答案】A

【分析】根据题意,运用代入法,结合对数与指数的互化公式进行求解即可.

5E.

【详解】因为%一叫=彳1怆言,星A的星等是一3.5,星B的星等是—1.5,

Z匕2

ccPΔ.P-

所以-1.5-(-3.5)=力g善=怆今===善=10"

25

故选:A

3.(2022福建省安溪第一中学高一月考)某种类型的细胞按如下规律分裂:每

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论