2024年新高考新结构数学模拟卷(二)(原卷版)_第1页
2024年新高考新结构数学模拟卷(二)(原卷版)_第2页
2024年新高考新结构数学模拟卷(二)(原卷版)_第3页
2024年新高考新结构数学模拟卷(二)(原卷版)_第4页
2024年新高考新结构数学模拟卷(二)(原卷版)_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年新高考新结构数学模拟卷(二)(模拟测试)(考试时间:120分钟试卷满分:150分)注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。写在试卷、草稿纸和答题卡上的非答题区域均无效。3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内。写在试卷草稿纸和答题卡上的非答题区域均无效。4.考试结束后,请将本试卷和答题卡一并上交。一、单选题(本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的)1.展开式中第3项的系数是(

)A.90 B.-90 C.-270 D.2702.在等差数列中,若,则公差A.1 B.2 C.3 D.43.已知向量,满足,且,则向量在向量上的投影向量为(

)A.1 B. C. D.4.在中,“”是“为钝角三角形”的(

)A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件5.已知三棱锥,是以为斜边的直角三角形,为边长是2的等边三角形,且平面平面,则三棱锥外接球的表面积为(

)A. B. C. D.6.血氧饱和度是呼吸循环的重要生理参数.人体的血氧饱和度正常范围是,当血氧饱和度低于时,需要吸氧治疗,在环境模拟实验室的某段时间内,可以用指数模型:描述血氧饱和度随给氧时间t(单位:时)的变化规律,其中为初始血氧饱和度,K为参数.已知,给氧1小时后,血氧饱和度为.若使得血氧饱和度达到,则至少还需要给氧时间(单位:时)为(

)(精确到0.1,参考数据:)A.0.3 B.0.5 C.0.7 D.0.97.已知双曲线的左,右焦点分别为,过的直线与双曲线分别在第一、二象限交于两点,内切圆的半径为,若,,则双曲线的离心率为(

)A. B. C. D.8.在锐角中,角所对的边分别为.若,则的取值范围为(

)A. B. C. D.二、多选题(本题共3小题,每小题6分,共18分。在每小题给出的选项中,有多项符合题目要求。全部选对得6分,部分选对得部分分,有选错得0分)9.已知为复数,设,,在复平面上对应的点分别为A,B,C,其中O为坐标原点,则(

)A. B.C. D.10.如图,已知抛物线的焦点为,抛物线的准线与轴交于点,过点的直线(直线的倾斜角为锐角)与抛物线相交于两点(A在轴的上方,在轴的下方),过点A作抛物线的准线的垂线,垂足为,直线与抛物线的准线相交于点,则(

)A.当直线的斜率为1时, B.若,则直线的斜率为2C.存在直线使得 D.若,则直线的倾斜角为11.已知函数定义域为R,满足,当时,.若函数的图象与函数的图象的交点为,,,(其中表示不超过的最大整数),则(

)A.是偶函数 B. C. D.三、填空题(本题共3小题,每小题5分,共15分)12.已知的定义域为A,集合,若,则实数a的取值范围是.13.如图,圆锥底面半径为,母线PA=2,点B为PA的中点,一只蚂蚁从A点出发,沿圆锥侧面绕行一周,到达B点,其最短路线长度为,其中下坡路段长为.

14.在同一平面直角坐标系中,P,Q分别是函数和图象上的动点,若对任意,有恒成立,则实数m的最大值为.四、解答题(本题共5小题,共77分,其中15题13分,16题15分,17题15分,18题17分,19题17分,解答应写出文字说明、证明过程或演算步骤)15.已知函数,.(1)求证:当,;(2)若,恒成立,求实数的取值范围.16.某公司是一家集无人机特种装备的研发、制造与技术服务的综合型科技创新企业.该公司生产的甲、乙两种类型无人运输机性能都比较出色,但操控水平需要十分娴熟,才能发挥更大的作用.已知在单位时间内,甲、乙两种类型无人运输机操作成功的概率分别为和,假设每次操作能否成功相互独立.(1)随机选择两种无人运输机中的一种,求选中的无人运输机操作成功的概率;(2)操作员连续进行两次无人机的操作有两种方案:方案一:在初次操作时,随机选择两种无人运输机中的一种,若初次操作成功,则第二次继续使用该类型设备;若初次操作不成功,则第二次使用另一类型进行操作;方案二:在初次操作时,随机选择两种无人运输机中的一种,无论初次操作是否成功,第二次均使用初次所选择的无人运输机进行操作.假定方案选择及操作不相互影响,试比较这两种方案的操作成功的次数的期望值.17.在图1所示的平面多边形中,四边形为菱形,与均为等边三角形.分别将沿着,翻折,使得四点恰好重合于点,得到四棱锥.(1)若,证明:;(2)若二面角的余弦值为,求的值.18.在平面直角坐标系中,双曲线的左、右焦点分别为的离心率为2,直线过与交于两点,当时,的面积为3.(1)求双曲线的方程;(2)已知都在的右支上,设的斜率为.①求实数的取值范围;②是否存在实数,使得为锐角?若存在,请求出的取值范围;若不存在,请说明理由.19.已知无穷数列满足,其中表示x,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论