版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省吉安市泰和县2023-2024学年中考试题猜想数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1.我市某小区开展了“节约用水为环保作贡献”的活动,为了解居民用水情况,在小区随机抽查了10户家庭的月用水量,结果如下表:月用水量(吨)8910户数262则关于这10户家庭的月用水量,下列说法错误的是()A.方差是4 B.极差是2 C.平均数是9 D.众数是92.在如图所示的计算程序中,y与x之间的函数关系所对应的图象应为()A. B. C. D.3.已知一个多边形的内角和是1080°,则这个多边形是()A.五边形 B.六边形 C.七边形 D.八边形4.2017年,小榄镇GDP总量约31600000000元,数据31600000000科学记数法表示为()A.0.316×1010 B.0.316×1011 C.3.16×1010 D.3.16×10115.随着“三农”问题的解决,某农民近两年的年收入发生了明显变化,已知前年和去年的收入分别是60000元和80000元,下面是依据①②③三种农作物每种作物每年的收入占该年年收入的比例绘制的扇形统计图.依据统计图得出的以下四个结论正确的是()A.①的收入去年和前年相同B.③的收入所占比例前年的比去年的大C.去年②的收入为2.8万D.前年年收入不止①②③三种农作物的收入6.若点M(﹣3,y1),N(﹣4,y2)都在正比例函数y=﹣k2x(k≠0)的图象上,则y1与y2的大小关系是()A.y1<y2B.y1>y2C.y1=y2D.不能确定7.如图,AB是⊙O的直径,点E为BC的中点,AB=4,∠BED=120°,则图中阴影部分的面积之和为()A.1 B. C. D.8.正比例函数y=2kx的图象如图所示,则y=(k-2)x+1-k的图象大致是()A.B.C.D.9.甲、乙两超市在1月至8月间的盈利情况统计图如图所示,下面结论不正确的是()A.甲超市的利润逐月减少B.乙超市的利润在1月至4月间逐月增加C.8月份两家超市利润相同D.乙超市在9月份的利润必超过甲超市10.如图,在边长为4的正方形ABCD中,E、F是AD边上的两个动点,且AE=FD,连接BE、CF、BD,CF与BD交于点H,连接DH,下列结论正确的是()①△ABG∽△FDG②HD平分∠EHG③AG⊥BE④S△HDG:S△HBG=tan∠DAG⑤线段DH的最小值是2﹣2A.①②⑤ B.①③④⑤ C.①②④⑤ D.①②③④二、填空题(本大题共6个小题,每小题3分,共18分)11.一个正多边形的一个内角是它的一个外角的5倍,则这个多边形的边数是_______________12.计算:=_________
.13.如图,MN是⊙O的直径,MN=4,∠AMN=40°,点B为弧AN的中点,点P是直径MN上的一个动点,则PA+PB的最小值为_____.14.某航空公司规定,乘客所携带行李的重量x(kg)与运费y(元)满足如图所示的函数图象,那么每位乘客最多可免费携带____kg的行李.15.李明早上骑自行车上学,中途因道路施工推车步行了一段路,到学校共用时15分钟.如果他骑自行车的平均速度是每分钟250米,推车步行的平均速度是每分钟80米,他家离学校的路程是2900米,设他推车步行的时间为x分钟,那么可列出的方程是_____________.16.为选拔一名选手参加全国中学生游泳锦标赛自由泳比赛,我市四名中学生参加了男子100米自由泳训练,他们成绩的平均数及其方差s2如下表所示:甲乙丙丁1′05″331′04″261′04″261′07″29s21.11.11.31.6如果选拔一名学生去参赛,应派_________去.三、解答题(共8题,共72分)17.(8分)如图,已知矩形ABCD中,AB=3,AD=m,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(s).(1)若m=5,求当P,E,B三点在同一直线上时对应的t的值.(2)已知m满足:在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC的距离等于2,求所有这样的m的取值范围.18.(8分)2017年10月31日,在广州举行的世界城市日全球主场活动开幕式上,住建部公布许昌成为“国家生态园林城市”在2018年植树节到来之际,许昌某中学购买了甲、乙两种树木用于绿化校园.若购买7棵甲种树和4棵乙种树需510元;购买3棵甲种树和5棵乙种树需350元.(1)求甲种树和乙种树的单价;(2)按学校规划,准备购买甲、乙两种树共200棵,且甲种树的数量不少于乙种树的数量的,请设计出最省钱的购买方案,并说明理由.19.(8分)计算:|﹣1|﹣2sin45°+﹣20.(8分)某校为了解学生对篮球、足球、排球、羽毛球、乒乓球这五种球类运动的喜爱情况,随机抽取一部分学生进行问卷调查,统计整理并绘制了以下两幅不完整的统计图:请根据以上统计图提供的信息,解答下列问题:(1)共抽取名学生进行问卷调查;(2)补全条形统计图,求出扇形统计图中“足球”所对应的圆心角的度数;(3)该校共有3000名学生,请估计全校学生喜欢足球运动的人数.(4)甲乙两名学生各选一项球类运动,请求出甲乙两人选同一项球类运动的概率.21.(8分)如图,在正方形中,点是对角线上一个动点(不与点重合),连接过点作,交直线于点.作交直线于点,连接.(1)由题意易知,,观察图,请猜想另外两组全等的三角形;;(2)求证:四边形是平行四边形;(3)已知,的面积是否存在最小值?若存在,请求出这个最小值;若不存在,请说明理由.22.(10分)计算:2cos30°+--()-223.(12分)定义:和三角形一边和另两边的延长线同时相切的圆叫做三角形这边上的旁切圆.如图所示,已知:⊙I是△ABC的BC边上的旁切圆,E、F分别是切点,AD⊥IC于点D.(1)试探究:D、E、F三点是否同在一条直线上?证明你的结论.(2)设AB=AC=5,BC=6,如果△DIE和△AEF的面积之比等于m,,试作出分别以,为两根且二次项系数为6的一个一元二次方程.24.为了贯彻“减负增效”精神,掌握九年级600名学生每天的自主学习情况,某校学生会随机抽查了九年级的部分学生,并调查他们每天自主学习的时间.根据调查结果,制作了两幅不完整的统计图(图1,图2),请根据统计图中的信息回答下列问题:(1)本次调查的学生人数是人;(2)图2中α是度,并将图1条形统计图补充完整;(3)请估算该校九年级学生自主学习时间不少于1.5小时有人;(4)老师想从学习效果较好的4位同学(分别记为A、B、C、D,其中A为小亮)随机选择两位进行学习经验交流,用列表法或树状图的方法求出选中小亮A的概率.
参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】分析:根据极差=最大值-最小值;平均数指在一组数据中所有数据之和再除以数据的个数;一组数据中出现次数最多的数据叫做众数,以及方差公式S2=[(x1-)2+(x2-)2+…+(xn-)2],分别进行计算可得答案.详解:极差:10-8=2,平均数:(8×2+9×6+10×2)÷10=9,众数为9,方差:S2=[(8-9)2×2+(9-9)2×6+(10-9)2×2]=0.4,故选A.点睛:此题主要考查了极差、众数、平均数、方差,关键是掌握各知识点的计算方法.2、D【解析】
先求出一次函数的关系式,再根据函数图象与坐标轴的交点及函数图象的性质解答即可.【详解】由题意知,函数关系为一次函数y=-1x+4,由k=-1<0可知,y随x的增大而减小,且当x=0时,y=4,当y=0时,x=1.故选D.【点睛】本题考查学生对计算程序及函数性质的理解.根据计算程序可知此计算程序所反映的函数关系为一次函数y=-1x+4,然后根据一次函数的图象的性质求解.3、D【解析】
根据多边形的内角和=(n﹣2)•180°,列方程可求解.【详解】设所求多边形边数为n,∴(n﹣2)•180°=1080°,解得n=8.故选D.【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.4、C【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】31600000000=3.16×1.故选:C.【点睛】本题考查科学记数法,解题的关键是掌握科学记数法的表示.5、C【解析】
A、前年①的收入为60000×=19500,去年①的收入为80000×=26000,此选项错误;B、前年③的收入所占比例为×100%=30%,去年③的收入所占比例为×100%=32.5%,此选项错误;C、去年②的收入为80000×=28000=2.8(万元),此选项正确;D、前年年收入即为①②③三种农作物的收入,此选项错误,故选C.【点睛】本题主要考查扇形统计图,解题的关键是掌握扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数,并且通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.6、A【解析】
根据正比例函数的增减性解答即可.【详解】∵正比例函数y=﹣k2x(k≠0),﹣k2<0,∴该函数的图象中y随x的增大而减小,∵点M(﹣3,y1),N(﹣4,y2)在正比例函数y=﹣k2x(k≠0)图象上,﹣4<﹣3,∴y2>y1,故选:A.【点睛】本题考查了正比例函数图象与系数的关系:对于y=kx(k为常数,k≠0),当k>0时,y=kx的图象经过一、三象限,y随x的增大而增大;当k<0时,y=kx的图象经过二、四象限,y随x的增大而减小.7、C【解析】连接AE,OD,OE.∵AB是直径,∴∠AEB=90°.又∵∠BED=120°,∴∠AED=30°.∴∠AOD=2∠AED=60°.∵OA=OD.∴△AOD是等边三角形.∴∠A=60°.又∵点E为BC的中点,∠AED=90°,∴AB=AC.∴△ABC是等边三角形,∴△EDC是等边三角形,且边长是△ABC边长的一半2,高是.∴∠BOE=∠EOD=60°,∴和弦BE围成的部分的面积=和弦DE围成的部分的面积.∴阴影部分的面积=.故选C.8、B【解析】试题解析:由图象可知,正比函数y=2kx的图象经过二、四象限,∴2k<0,得k<0,∴k−2<0,1−k>0,∴函数y=(k−2)x+1−k图象经过一、二、四象限,故选B.9、D【解析】【分析】根据折线图中各月的具体数据对四个选项逐一分析可得.【详解】A、甲超市的利润逐月减少,此选项正确,不符合题意;B、乙超市的利润在1月至4月间逐月增加,此选项正确,不符合题意;C、8月份两家超市利润相同,此选项正确,不符合题意;D、乙超市在9月份的利润不一定超过甲超市,此选项错误,符合题意,故选D.【点睛】本题主要考查折线统计图,折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.10、B【解析】
首先证明△ABE≌△DCF,△ADG≌△CDG(SAS),△AGB≌△CGB,利用全等三角形的性质,等高模型、三边关系一一判断即可.【详解】解:∵四边形ABCD是正方形,∴AB=CD,∠BAD=∠ADC=90°,∠ADB=∠CDB=45°.∵在△ABE和△DCF中,AB=CD,∠BAD=∠ADC,AE=DF,∴△ABE≌△DCF,∴∠ABE=∠DCF.∵在△ADG和△CDG中,AD=CD,∠ADB=∠CDB,DG=DG,∴△ADG≌△CDG,∴∠DAG=∠DCF,∴∠ABE=∠DAG.∵∠DAG+∠BAH=90°,∴∠BAE+∠BAH=90°,∴∠AHB=90°,∴AG⊥BE,故③正确,同理可证:△AGB≌△CGB.∵DF∥CB,∴△CBG∽△FDG,∴△ABG∽△FDG,故①正确.∵S△HDG:S△HBG=DG:BG=DF:BC=DF:CD=tan∠FCD,∠DAG=∠FCD,∴S△HDG:S△HBG=tan∠FCD=tan∠DAG,故④正确.取AB的中点O,连接OD、OH.∵正方形的边长为4,∴AO=OH=×4=1,由勾股定理得,OD=,由三角形的三边关系得,O、D、H三点共线时,DH最小,DH最小=1-1.无法证明DH平分∠EHG,故②错误,故①③④⑤正确.故选B.【点睛】本题考查了相似三角形的判定与性质,全等三角形的判定与性质,正方形的性质,解直角三角形,解题的关键是掌握它们的性质进行解题.二、填空题(本大题共6个小题,每小题3分,共18分)11、1【解析】
设这个正多边的外角为x°,则内角为5x°,根据内角和外角互补可得x+5x=180,解可得x的值,再利用外角和360°÷外角度数可得边数.【详解】设这个正多边的外角为x°,由题意得:x+5x=180,解得:x=30,360°÷30°=1.故答案为:1.【点睛】此题主要考查了多边形的内角和外角,关键是计算出外角的度数,进而得到边数.12、2【解析】
利用平方差公式求解,即可求得答案.【详解】=()2-()2=5-3=2.故答案为2.【点睛】此题考查了二次根式的乘除运算.此题难度不大,注意掌握平方差公式的应用.13、2【解析】
过A作关于直线MN的对称点A′,连接A′B,由轴对称的性质可知A′B即为PA+PB的最小值,【详解】解:连接OB,OA′,AA′,∵AA′关于直线MN对称,∴∵∠AMN=40°,∴∠A′ON=80°,∠BON=40°,∴∠A′OB=120°,过O作OQ⊥A′B于Q,在Rt△A′OQ中,OA′=2,
∴A′B=2A′Q=即PA+PB的最小值.【点睛】本题考查轴对称求最小值问题及解直角三角形,根据轴对称的性质准确作图是本题的解题关键.14、2【解析】
设乘客所携带行李的重量x(kg)与运费y(元)之间的函数关系式为y=kx+b,由待定系数法求出其解即可.【详解】解:设乘客所携带行李的重量x(kg)与运费y(元)之间的函数关系式为y=kx+b,由题意,得,解得,,则y=30x-1.
当y=0时,
30x-1=0,
解得:x=2.
故答案为:2.【点睛】本题考查了运用待定系数法求一次函数的解析式的运用,由函数值求自变量的值的运用,解答时求出函数的解析式是关键.15、【解析】分析:根据题意把李明步行和骑车各自所走路程表达出来,再结合步行和骑车所走总里程为2900米,列出方程即可.详解:设他推车步行的时间为x分钟,根据题意可得:80x+250(15-x)=2900.故答案为80x+250(15-x)=2900.点睛:弄清本题中的等量关系:李明推车步行的路程+李明骑车行驶的路程=2900是解题的关键.16、乙【解析】
∵丁〉甲乙=丙,∴从乙和丙中选择一人参加比赛,
∵S
乙2<S
丙2,
∴选择乙参赛,
故答案是:乙.三、解答题(共8题,共72分)17、(1)1;(1)≤m<.【解析】
(1)在Rt△ABP中利用勾股定理即可解决问题;(1)分两种情形求出AD的值即可解决问题:①如图1中,当点P与A重合时,点E在BC的下方,点E到BC的距离为1.②如图3中,当点P与A重合时,点E在BC的上方,点E到BC的距离为1.【详解】解:(1):(1)如图1中,设PD=t.则PA=5-t.
∵P、B、E共线,
∴∠BPC=∠DPC,
∵AD∥BC,
∴∠DPC=∠PCB,
∴∠BPC=∠PCB,
∴BP=BC=5,
在Rt△ABP中,∵AB1+AP1=PB1,
∴31+(5-t)1=51,
∴t=1或9(舍弃),∴t=1时,B、E、P共线.(1)如图1中,当点P与A重合时,点E在BC的下方,点E到BC的距离为1.作EQ⊥BC于Q,EM⊥DC于M.则EQ=1,CE=DC=3易证四边形EMCQ是矩形,∴CM=EQ=1,∠M=90°,∴EM=,∵∠DAC=∠EDM,∠ADC=∠M,∴△ADC∽△DME,∴∴∴AD=,如图3中,当点P与A重合时,点E在BC的上方,点E到BC的距离为1.作EQ⊥BC于Q,延长QE交AD于M.则EQ=1,CE=DC=3在Rt△ECQ中,QC=DM=,由△DME∽△CDA,∴∴,∴AD=,综上所述,在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC的距离等于1,这样的m的取值范围≤m<.【点睛】本题考查四边形综合问题,根据题意作出图形,熟练运用勾股定理和相似三角形的性质是本题的关键.18、(1)甲种树的单价为50元/棵,乙种树的单价为40元/棵.(2)当购买1棵甲种树、133棵乙种树时,购买费用最低,理由见解析.【解析】
(1)设甲种树的单价为x元/棵,乙种树的单价为y元/棵,根据“购买7棵甲种树和4棵乙种树需510元;购买3棵甲种树和5棵乙种树需350元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;
(2)设购买甲种树a棵,则购买乙种树(200-a)棵,根据甲种树的数量不少于乙种树的数量的可得出关于a的一元一次不等式,解之即可得出a的取值范围,再由甲种树的单价比乙种树的单价贵,即可找出最省钱的购买方案.【详解】解:(1)设甲种树的单价为x元/棵,乙种树的单价为y元/棵,根据题意得:
,解得:答:甲种树的单价为50元/棵,乙种树的单价为40元/棵.(2)设购买甲种树a棵,则购买乙种树(200﹣a)棵,根据题意得:解得:∵a为整数,∴a≥1.∵甲种树的单价比乙种树的单价贵,∴当购买1棵甲种树、133棵乙种树时,购买费用最低.【点睛】一元一次不等式的应用,二元一次方程组的应用,读懂题目,是解题的关键.19、﹣1【解析】
直接利用负指数幂的性质以及绝对值的性质、特殊角的三角函数值分别化简得出答案.【详解】原式=(﹣1)﹣2×+2﹣4=﹣1﹣+2﹣4=﹣1.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.20、(1)1;(2)详见解析;(3)750;(4).【解析】
(1)用排球的人数÷排球所占的百分比,即可求出抽取学生的人数;(2)足球人数=学生总人数-篮球的人数-排球人数-羽毛球人数-乒乓球人数,即可补全条形统计图;(3)计算足球的百分比,根据样本估计总体,即可解答;(4)利用概率公式计算即可.【详解】(1)30÷15%=1(人).答:共抽取1名学生进行问卷调查;故答案为1.(2)足球的人数为:1﹣60﹣30﹣24﹣36=50(人),“足球球”所对应的圆心角的度数为360°×0.25=90°.如图所示:(3)3000×0.25=750(人).答:全校学生喜欢足球运动的人数为750人.(4)画树状图为:(用A、B、C、D、E分别表示篮球、足球、排球、羽毛球、乒乓球的五张卡片)共有25种等可能的结果数,选同一项目的结果数为5,所以甲乙两人中有且选同一项目的概率P(A)=.【点睛】本题主要考查了条形统计图,扇形统计图以及用样本估计总体的应用,解题时注意:从扇形图上可以清楚地看出各部分数量和总数量之间的关系.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.21、(1);(2)见解析;(3)存在,2【解析】
(1)利用正方形的性质及全等三角形的判定方法证明全等即可;(2)由(1)可知,则有,从而得到,最后利用一组对边平行且相等即可证明;(3)由(1)可知,则,从而得到是等腰直角三角形,则当最短时,的面积最小,再根据AB的值求出PB的最小值即可得出答案.【详解】解:(1)四边形是正方形,,,,,,在和中,在和中,,故答案为;(2)证明:由(1)可知,,四边形是平行四边形.(3)解:存在,理由如下:是等腰直角三角形,最短时,的面积最小,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 兰州城市学院《团体心理辅导》2022-2023学年第一学期期末试卷
- 第一教学课件网
- 辽宁省重点高中沈阳市郊联体2023-2024学年高三物理上学期10月月考试题含解析
- 什么是高血压课件
- 湖南株洲人文介绍
- 青海西宁人文介绍
- 敬礼课件教学课件
- 胫后神经损伤的临床特征
- 我的家乡贵州都匀
- 肺转移瘤的临床特征
- 2024年1月浙江高考生物卷试题真题解读及答案详解
- S7-1200 PLC编程及应用技术 课件 4-6.上升沿和下降沿指令及其应用
- 机关食堂食品安全管理制度
- 2024年共青团入团积极分子考试题库(附答案)
- 南京大屠杀公祭日
- 姑姐回娘家活动方案
- 《涂料生产企业安全生产标准化实施指南》
- 行政复议法-形考作业3-国开(ZJ)-参考资料
- 植物营养学智慧树知到期末考试答案章节答案2024年黑龙江八一农垦大学
- 速度滑冰智慧树知到期末考试答案2024年
- 2024年度网络安全培训内容
评论
0/150
提交评论