江苏省苏州常熟市2023-2024学年中考适应性考试数学试题含解析_第1页
江苏省苏州常熟市2023-2024学年中考适应性考试数学试题含解析_第2页
江苏省苏州常熟市2023-2024学年中考适应性考试数学试题含解析_第3页
江苏省苏州常熟市2023-2024学年中考适应性考试数学试题含解析_第4页
江苏省苏州常熟市2023-2024学年中考适应性考试数学试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省苏州常熟市2023-2024学年中考适应性考试数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,在平面直角坐标系xOy中,点A(1,0),B(2,0),正六边形ABCDEF沿x轴正方向无滑动滚动,每旋转60°为滚动1次,那么当正六边形ABCDEF滚动2017次时,点F的坐标是()A.(2017,0) B.(2017,)C.(2018,) D.(2018,0)2.如图,将含60°角的直角三角板ABC绕顶点A顺时针旋转45°度后得到△AB′C′,点B经过的路径为弧BB′,若∠BAC=60°,AC=1,则图中阴影部分的面积是()A. B. C. D.π3.圆锥的底面直径是80cm,母线长90cm,则它的侧面积是A. B. C. D.4.如图,在平行四边形ABCD中,E是边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F,若∠B=52°,∠DAE=20°,则∠FED′的度数为()A.40° B.36° C.50° D.45°5.2017年,太原市GDP突破三千亿元大关,达到3382亿元,经济总量比上年增长了426.58亿元,达到近三年来增量的最高水平,数据“3382亿元”用科学记数法表示为()A.3382×108元B.3.382×108元C.338.2×109元D.3.382×1011元6.如图,在平面直角坐标系xOy中,等腰梯形ABCD的顶点坐标分别为A(1,1),B(2,﹣1),C(﹣2,﹣1),D(﹣1,1).以A为对称中心作点P(0,2)的对称点P1,以B为对称中心作点P1的对称点P2,以C为对称中心作点P2的对称点P3,以D为对称中心作点P3的对称点P4,…,重复操作依次得到点P1,P2,…,则点P2010的坐标是()A.(2010,2) B.(2010,﹣2) C.(2012,﹣2) D.(0,2)7.下列命题是真命题的是()A.过一点有且只有一条直线与已知直线平行B.对角线相等且互相垂直的四边形是正方形C.平分弦的直径垂直于弦,并且平分弦所对的弧D.若三角形的三边a,b,c满足a2+b2+c2=ac+bc+ab,则该三角形是正三角形8.如图,已知AB是⊙O的直径,弦CD⊥AB于E,连接BC、BD、AC,下列结论中不一定正确的是()A.∠ACB=90° B.OE=BE C.BD=BC D.9.如图,夜晚,小亮从点A经过路灯C的正下方沿直线走到点B,他的影长y随他与点A之间的距离x的变化而变化,那么表示y与x之间的函数关系的图象大致为()A. B.C. D.10.下列实数中,最小的数是()A. B. C.0 D.二、填空题(共7小题,每小题3分,满分21分)11.下面是“作已知圆的内接正方形”的尺规作图过程.已知:⊙O.求作:⊙O的内接正方形.作法:如图,(1)作⊙O的直径AB;(2)分别以点A,点B为圆心,大于12(3)作直线MN与⊙O交于C、D两点,顺次连接A、C、B、D.即四边形ACBD为所求作的圆内接正方形.请回答:该尺规作图的依据是_____.12.已知线段AB=2cm,点C在线段AB上,且AC2=BC·AB,则AC的长___________cm.13.若代数式有意义,则实数x的取值范围是____.14.如图,从一块直径是8m的圆形铁皮上剪出一个圆心角为90°的扇形,将剪下的扇形围成一个圆锥,圆锥的高是_________m.15.如果将“概率”的英文单词probability中的11个字母分别写在11张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字母b的概率是________.16.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值是.17.在平面直角坐标系xOy中,将抛物线y=3(x+2)2-1平移后得到抛物线y=3x2+2.请你写出一种平移方法.答:________.三、解答题(共7小题,满分69分)18.(10分)如图,⊙O中,AB是⊙O的直径,G为弦AE的中点,连接OG并延长交⊙O于点D,连接BD交AE于点F,延长AE至点C,使得FC=BC,连接BC.(1)求证:BC是⊙O的切线;(2)⊙O的半径为5,tanA=,求FD的长.19.(5分)已知:如图.D是的边上一点,,交于点M,.(1)求证:;(2)若,试判断四边形的形状,并说明理由.20.(8分)已知关于x的方程x2﹣6mx+9m2﹣9=1.(1)求证:此方程有两个不相等的实数根;(2)若此方程的两个根分别为x1,x2,其中x1>x2,若x1=2x2,求m的值.21.(10分)如图,AB是⊙O的直径,C、D为⊙O上两点,且,过点O作OE⊥AC于点E⊙O的切线AF交OE的延长线于点F,弦AC、BD的延长线交于点G.(1)求证:∠F=∠B;(2)若AB=12,BG=10,求AF的长.22.(10分)如图,在△ABC中,AB=AC,∠BAC=90°,M是BC的中点,延长AM到点D,AE=AD,∠EAD=90°,CE交AB于点F,CD=DF.(1)∠CAD=______度;(2)求∠CDF的度数;(3)用等式表示线段CD和CE之间的数量关系,并证明.23.(12分)某商场计划购进、两种新型节能台灯共盏,这两种台灯的进价、售价如表所示:()若商场预计进货款为元,则这两种台灯各购进多少盏?()若商场规定型台灯的进货数量不超过型台灯数量的倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?24.(14分)“食品安全”受到全社会的广泛关注,济南市某中学对部分学生就食品安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有人,扇形统计图中“基本了解”部分所对应扇形的圆心角为;(2)请补全条形统计图;(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对食品安全知识达到“了解”和“基本了解”程度的总人数;(4)若从对食品安全知识达到“了解”程度的2个女生和2个男生中随机抽取2人参加食品安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率.

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】

本题是规律型:点的坐标;坐标与图形变化-旋转,正六边形ABCDEF一共有6条边,即6次一循环;因为2017÷6=336余1,点F滚动1次时的横坐标为2,纵坐标为,点F滚动7次时的横坐标为8,纵坐标为,所以点F滚动2107次时的纵坐标与相同,横坐标的次数加1,由此即可解决问题.【详解】.解:∵正六边形ABCDEF一共有6条边,即6次一循环;∴2017÷6=336余1,∴点F滚动1次时的横坐标为2,纵坐标为,点F滚动7次时的横坐标为8,纵坐标为,∴点F滚动2107次时的纵坐标与相同,横坐标的次数加1,∴点F滚动2107次时的横坐标为2017+1=2018,纵坐标为,∴点F滚动2107次时的坐标为(2018,),故选C.【点睛】本题考查坐标与图形的变化,规律型:点的坐标,解题关键是学会从特殊到一般的探究方法,是中考常考题型.2、A【解析】试题解析:如图,∵在Rt△ABC中,∠ACB=90°,∠BAC=60°,AC=1,∴BC=ACtan60°=1×=,AB=2∴S△ABC=AC•BC=.根据旋转的性质知△ABC≌△AB′C′,则S△ABC=S△AB′C′,AB=AB′.∴S阴影=S扇形ABB′+S△AB′C′-S△ABC==.故选A.考点:1.扇形面积的计算;2.旋转的性质.3、D【解析】圆锥的侧面积=×80π×90=3600π(cm2).故选D.4、B【解析】

由平行四边形的性质得出∠D=∠B=52°,由折叠的性质得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,由三角形的外角性质求出∠AEF=72°,与三角形内角和定理求出∠AED′=108°,即可得出∠FED′的大小.【详解】∵四边形ABCD是平行四边形,∴∠D=∠B=52°,由折叠的性质得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,∴∠AEF=∠D+∠DAE=52°+20°=72°,∠AED′=180°﹣∠EAD′﹣∠D′=108°,∴∠FED′=108°﹣72°=36°.故选B.【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质和折叠的性质,求出∠AEF和∠AED′是解决问题的关键.5、D【解析】

科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】3382亿=338200000000=3.382×1.故选:D.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6、B【解析】分析:根据题意,以A为对称中心作点P(0,1)的对称点P1,即A是PP1的中点,结合中点坐标公式即可求得点P1的坐标;同理可求得其它各点的坐标,分析可得规律,进而可得答案.详解:根据题意,以A为对称中心作点P(0,1)的对称点P1,即A是PP1的中点,又∵A的坐标是(1,1),结合中点坐标公式可得P1的坐标是(1,0);同理P1的坐标是(1,﹣1),记P1(a1,b1),其中a1=1,b1=﹣1.根据对称关系,依次可以求得:P3(﹣4﹣a1,﹣1﹣b1),P4(1+a1,4+b1),P5(﹣a1,﹣1﹣b1),P6(4+a1,b1),令P6(a6,b1),同样可以求得,点P10的坐标为(4+a6,b1),即P10(4×1+a1,b1),∵1010=4×501+1,∴点P1010的坐标是(1010,﹣1),故选:B.点睛:本题考查了对称的性质,坐标与图形的变化---旋转,根据条件求出前边几个点的坐标,得到规律是解题关键.7、D【解析】

根据真假命题的定义及有关性质逐项判断即可.【详解】A、真命题为:过直线外一点有且只有一条直线与已知直线平行,故本选项错误;B、真命题为:对角线相等且互相垂直的四边形是正方形或等腰梯形,故本选项错误;C、真命题为:平分弦的直径垂直于弦(非直径),并且平分弦所对的弧,故本选项错误;D、∵a2+b2+c2=ac+bc+ab,∴2a2+2b2+2c2-2ac-2bc-2ab=0,∴(a-b)2+(a-c)2+(b-c)2=0,∴a=b=c,故本选项正确.故选D.【点睛】本题考查了命题的真假,熟练掌握真假命题的定义及几何图形的性质是解答本题的关键,当命题的条件成立时,结论也一定成立的命题叫做真命题;当命题的条件成立时,不能保证命题的结论总是成立的命题叫做假命题.熟练掌握所学性质是解答本题的关键.8、B【解析】

根据垂径定理及圆周角定理进行解答即可.【详解】∵AB是⊙O的直径,∴∠ACB=90°,故A正确;∵点E不一定是OB的中点,∴OE与BE的关系不能确定,故B错误;∵AB⊥CD,AB是⊙O的直径,∴,∴BD=BC,故C正确;∴,故D正确.故选B.【点睛】本题考查的是垂径定理,熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键.9、A【解析】设身高GE=h,CF=l,AF=a,当x≤a时,在△OEG和△OFC中,∠GOE=∠COF(公共角),∠AEG=∠AFC=90°,∴△OEG∽△OFC,∴,∵a、h、l都是固定的常数,∴自变量x的系数是固定值,∴这个函数图象肯定是一次函数图象,即是直线;∵影长将随着离灯光越来越近而越来越短,到灯下的时候,将是一个点,进而随着离灯光的越来越远而影长将变大.故选A.10、B【解析】

根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,进行比较.【详解】∵<-2<0<,∴最小的数是-π,故选B.【点睛】此题主要考查了比较实数的大小,要熟练掌握任意两个实数比较大小的方法.(1)正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.(2)利用数轴也可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小.二、填空题(共7小题,每小题3分,满分21分)11、相等的圆心角所对的弦相等,直径所对的圆周角是直角.【解析】

根据圆内接正四边形的定义即可得到答案.【详解】到线段两端距离相等的点在这条线段的中垂线上;两点确定一条直线;互相垂直的直径将圆四等分,从而得到答案.【点睛】本题主要考查了圆内接正四边形的定义以及基本性质,解本题的要点在于熟知相关基本知识点.12、【解析】

设AC=x,则BC=2-x,根据AC2=BC·AB列方程求解即可.【详解】解:设AC=x,则BC=2-x,根据AC2=BC·AB可得x2=2(2-x),解得:x=或(舍去).故答案为.【点睛】本题考查了黄金分割的应用,关键是明确黄金分割所涉及的线段的比.13、x≠﹣5.【解析】

根据分母不为零分式有意义,可得答案.【详解】由题意,得x+5≠0,解得x≠﹣5,故答案是:x≠﹣5.【点睛】本题考查了分式有意义的条件,利用分母不为零分式有意义得出不等式是解题关键.14、【解析】分析:首先连接AO,求出AB的长度是多少;然后求出扇形的弧长弧BC为多少,进而求出扇形围成的圆锥的底面半径是多少;最后应用勾股定理,求出圆锥的高是多少即可.详解:如图1,连接AO,∵AB=AC,点O是BC的中点,∴AO⊥BC,又∵∴∴∴弧BC的长为:(m),∴将剪下的扇形围成的圆锥的半径是:(m),∴圆锥的高是:故答案为.点睛:考查圆锥的计算,正确理解圆锥的侧面展开图与原来扇形之间的关系式解决本题的关键.15、【解析】分析:让英文单词probability中字母b的个数除以字母的总个数即为所求的概率.详解:∵英文单词probability中,一共有11个字母,其中字母b有2个,∴任取一张,那么取到字母b的概率为.故答案为.点睛:本题考查了概率公式,用到的知识点为:概率等于所求情况数与总情况数之比.16、2【解析】试题分析:分析前三个正方形可知,规律为右上和左下两个数的积减左上的数等于右下的数,且左上,左下,右上三个数是相邻的偶数.因此,图中阴影部分的两个数分别是左下是12,右上是1.解:分析可得图中阴影部分的两个数分别是左下是12,右上是1,则m=12×1﹣10=2.故答案为2.考点:规律型:数字的变化类.17、答案不唯一【解析】分析:把y改写成顶点式,进而解答即可.详解:y先向右平移2个单位长度,再向上平移3个单位得到抛物线.故答案为y先向右平移2个单位长度,再向上平移3个单位得到抛物线.点睛:本题考查了二次函数图象与几何变换:先把二次函数的解析式配成顶点式为y=a(x-)²+,然后把抛物线的平移问题转化为顶点的平移问题.三、解答题(共7小题,满分69分)18、(1)证明见解析(2)【解析】

(1)由点G是AE的中点,根据垂径定理可知OD⊥AE,由等腰三角形的性质可得∠CBF=∠DFG,∠D=∠OBD,从而∠OBD+∠CBF=90°,从而可证结论;(2)连接AD,解Rt△OAG可求出OG=3,AG=4,进而可求出DG的长,再证明△DAG∽△FDG,由相似三角形的性质求出FG的长,再由勾股定理即可求出FD的长.【详解】(1)∵点G是AE的中点,∴OD⊥AE,∵FC=BC,∴∠CBF=∠CFB,∵∠CFB=∠DFG,∴∠CBF=∠DFG∵OB=OD,∴∠D=∠OBD,∵∠D+∠DFG=90°,∴∠OBD+∠CBF=90°即∠ABC=90°∵OB是⊙O的半径,∴BC是⊙O的切线;(2)连接AD,∵OA=5,tanA=,∴OG=3,AG=4,∴DG=OD﹣OG=2,∵AB是⊙O的直径,∴∠ADF=90°,∵∠DAG+∠ADG=90°,∠ADG+∠FDG=90°∴∠DAG=∠FDG,∴△DAG∽△FDG,∴,∴DG2=AG•FG,∴4=4FG,∴FG=1∴由勾股定理可知:FD=.【点睛】本题考查了垂径定理,等腰三角形的性质,切线的判定,解直角三角形,相似三角形的判定与性质,勾股定理等知识,求出∠CBF=∠DFG,∠D=∠OBD是解(1)的关键,证明证明△DAG∽△FDG是解(2)的关键.19、(1)证明见解析;(2)四边形ADCN是矩形,理由见解析.【解析】

(1)根据平行得出∠DAM=∠NCM,根据ASA推出△AMD≌△CMN,得出AD=CN,推出四边形ADCN是平行四边形即可;(2)根据∠AMD=2∠MCD,∠AMD=∠MCD+∠MDC求出∠MCD=∠MDC,推出MD=MC,求出MD=MN=MA=MC,推出AC=DN,根据矩形的判定得出即可.【详解】证明:(1)∵CN∥AB,∴∠DAM=∠NCM,∵在△AMD和△CMN中,∠DAM=∠NCMMA=MC∠DMA=∠NMC,∴△AMD≌△CMN(ASA),∴AD=CN,又∵AD∥CN,∴四边形ADCN是平行四边形,∴CD=AN;(2)解:四边形ADCN是矩形,理由如下:∵∠AMD=2∠MCD,∠AMD=∠MCD+∠MDC,∴∠MCD=∠MDC,∴MD=MC,由(1)知四边形ADCN是平行四边形,∴MD=MN=MA=MC,∴AC=DN,∴四边形ADCN是矩形.【点睛】本题考查了全等三角形的性质和判定,平行四边形的判定和性质,矩形的判定的应用,能综合运用性质进行推理是解此题的关键,综合性比较强,难度适中.20、(1)见解析;(2)m=2【解析】

(1)根据一元二次方程根的判别式进行分析解答即可;(2)用“因式分解法”解原方程,求得其两根,再结合已知条件分析解答即可.【详解】(1)∵在方程x2﹣6mx+9m2﹣9=1中,△=(﹣6m)2﹣4(9m2﹣9)=26m2﹣26m2+26=26>1.∴方程有两个不相等的实数根;(2)关于x的方程:x2﹣6mx+9m2﹣9=1可化为:[x﹣(2m+2)][x﹣(2m﹣2)]=1,解得:x=2m+2和x=2m-2,∵2m+2>2m﹣2,x1>x2,∴x1=2m+2,x2=2m﹣2,又∵x1=2x2,∴2m+2=2(2m﹣2)解得:m=2.【点睛】(1)熟知“一元二次方程根的判别式:在一元二次方程中,当时,原方程有两个不相等的实数根,当时,原方程有两个相等的实数根,当时,原方程没有实数根”是解答第1小题的关键;(2)能用“因式分解法”求得关于x的方程x2﹣6mx+9m2﹣9=1的两个根是解答第2小题的关键.21、(1)见解析;(2).【解析】

(1)根据圆周角定理得到∠GAB=∠B,根据切线的性质得到∠GAB+∠GAF=90°,证明∠F=∠GAB,等量代换即可证明;(2)连接OG,根据勾股定理求出OG,证明△FAO∽△BOG,根据相似三角形的性质列出比例式,计算即可.【详解】(1)证明:∵,∴.∴∠GAB=∠B,∵AF是⊙O的切线,∴AF⊥AO.∴∠GAB+∠GAF=90°.∵OE⊥AC,∴∠F+∠GAF=90°.∴∠F=∠GAB,∴∠F=∠B;(2)解:连接OG.∵∠GAB=∠B,∴AG=BG.∵OA=OB=6,∴OG⊥AB.∴,∵∠FAO=∠BOG=90°,∠F=∠B,∴△FAO∽△BOG,∴.∴.【点睛】本题考查的是切线的性质、相似三角形的判定和性质,掌握圆的切线垂直于经过切点的半径是解题的关键.22、(1)45;(2)90°;(3)见解析.【解析】

(1)根据等腰三角形三线合一可得结论;(2)连接DB,先证明△BAD≌△CAD,得BD=CD=DF,则∠DBA=∠DFB=∠DCA,根据四边形内角和与平角的定义可得∠BAC+∠CDF=180°,所以∠CDF=90°;(3)证明△EAF≌△DAF,得DF=EF,由②可知,可得结论.【详解】(1)解:∵AB=AC,M是BC的中点,∴AM⊥BC,∠BAD=∠CAD,∵∠BAC=90°,∴∠CAD=45°,故答案为:45(2)解:如图,连接DB.∵AB=AC,∠BAC=90°,M是BC的中点,∴∠BAD=∠CAD=45°.∴△BAD≌△CAD.∴∠DBA=∠DCA,BD=CD.∵CD=DF,∴BD=DF.∴∠DBA=∠DFB=∠DCA.∵∠DFB+∠DFA=180°,∴∠DCA+∠DFA=180°.∴∠BAC+∠CDF=180°.∴∠CDF=90°.(3).证明:∵∠EAD=90°,∴∠EAF=∠DAF=45°.∵AD=AE,∴△EAF≌△DAF.∴DF=EF.由②可知,.∴.【点睛】此题考查等腰三角形的性质,全等三角形的判定与性质,直角三角形的性质,解题关键在于掌握判定定理及性质.23、(1)购进型台灯盏,型台灯25盏;(2)当商场购进型台灯盏时,商场获利最大,此时获利为元.【解析】试题分析:(1)设商场应购进A型

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论