版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题35复数
知考纲要求
识考点预测
梳常用结论
理方法技巧
题题型一:复数的概念
型题型二:复数的四则运算
归题型三:复数的几何意义
类
训练一:
培训练二:
优训练三:
训训练四:
练训练五:
训练六:
强单选题:共8题
化多选题:共4题
测填空题:共10题
试
一、【知识梳理】
【考纲要求】
1.理解复数的基本概念.
2.理解复数相等的充要条件.
3.了解复数的代数表示法及其几何意义.
4.能进行复数代数形式的四则运算.
5.了解复数代数形式的加、减运算的几何意义.
【考点预测】
1.复数的有关概念
(1)复数的定义:形如a+bi(a,bdR)的数叫做复数,其中2是实部,么是虚部,i为虚数单位.
(2)复数的分类:
复数z=a+6i(a,h^R)
实数(b三0),
虚数(b三0)(其中,当。三0时为纯虚数).
(3)复数相等:
a+b\=c+di^a=cjj,b=d(a,b,c,d《R).
(4)共也复数:
a+bi与c+di互为共貌复数<=>a=c,b=—d(a,b,c,dUR).
⑸复数的模:
向量力的模叫做复数z=a+Z>i的模或绝对值,记作|a+bi|或|z|,即|z|=|a+hi\=y]a2+b\a,b£R).
2.复数的几何意义
—*—*X4*f^L.__
(1)复数z=a+bi(a,复平面内的点Z(a,b).
—*—•X*fJo/.—>
⑵复数z=a+例(a,<WR)、込平面向量OZ.
3.复数的四则运算
(1)复数的加、减、乘、除运算法则:
设zi=a+bi,Z2=c+di(a,b,c,dgR),则
①加法:zi+z2=(a+bi)+(c+"i)=(a+c)+(b+d)i;
②减法:z\-Z2=(a+Z>i)—(c+di)=(a—。)+优一")i;
③乘法:zrz2=厶i~Hc+di)=(a。->d)+(ad+bc)i;
zia+6i(a+bi)(c~~di)ac+bd।be—ad.(
④除法:
Z2c+di(c+di)(c-di)c2-1-cPc2+理
(2)几何意义:复数加、减法可按向量的平行四边形或三角形法则进行.
如图给出的平行四边形。Z1ZZ2可以直观地反映出复数加、减法的几何意义,即应=应1十灵2,
ZiZi=07.1—OZ].
【常用结论】
l.i的乘方具有周期性
4n4n+14n+24n+3
i=l,i=i,i=-l,i=-i,i4"+i4”+l+i4”+2+i4”+3=0,„eN*
1+i.1-i
2.(1土i)2=±2i,-----=i:------=
1-i1+i
3.复数的模与共軻复数的关系
z-z=\z\2=\z^.
【方法技巧】
1.解决复数概念问题的方法及注意事项
(1)复数的分类及对应点的位置问题都可以转化为复数的实部与虚部应该满足的条件问题,只
需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可.
(2)解题时一定要先看复数是否为a+bi(a,bWR)的形式,以确定实部和虚部.
2.复数的乘法:复数乘法类似于多项式的乘法运算.
3.复数的除法:除法的关键是分子分母同乘以分母的共机复数.
4.由于复数、点、向量之间建立了一一对应的关系,因此可把复数、向量与解析几何联系在一
起,解题时可运用数形结合的方法,使问题的解决更加直观.
二、【题型归类】
【题型一】复数的概念
【典例1]如果复数"(bGR)的实部与虚部相等,那么b=()
1
A.-2B.lC.2
7
【典例2](多选)若复数z=—,其中i为虚数单位,则下列结论正确的是()
1+1
A.z的虚部为一1
B.|z尸也
C.Z2为纯虚数
D.z的共辄复数为一l—i
【典例3】(多选)设Z1,Z2是复数,则下列命题中的真命题是()
A.若|zi—Z2|=0,则z1=Z2
B.若Z1=Z2,则Z1=Z2
C.若㈤=忆2],则ZrZ1=Z2-Z2
D.若|z“=h2|,则Z仁z2
【题型二】复数的四则运算
【典例1】(多选)设zi,Z2,Z3为复数,ZlWO.下列命题中正确的是()
A.若㈤=㈤,则Z2=±Z3
B.若Z1Z2=Z1Z3,则Z2=Z3
C.若Z2=Z3,则匕1Z2|=|Z1Z3|
D.若Z1Z2=,|2,则Z1=Z2
【典例2】在数学中,记表达式ad—be为由J:所确定的二阶行列式.若在复数域内,zi
=l+i,Z2="±Z3=Z2,则当|Z|Z2|时,Z4的虚部为________.
1—iIZ3Z4I2
,2023
【典例3]若z=---则|z|=_______________;z+z=___________.
1—i
【题型三】复数的几何意义
【典例1】已知i为虚数单位,则复数3的共枕复数在复平面内对应的点位于()
A.第一象限B.第二象限
C.第三象限D.第四象限
【典例2】设复数Z1,Z2在复平面内的对应点关于虚轴对称,Z1=2+i(i为虚数单位),则Z1Z2
=()
A.-5B.5
C.-4+iD.-4-i
【典例3】已知复数z】=—l+2i,Z2=l—i,Z3=3—4i,它们在复平面内对应的点分别为4,B,
C,若况=2晶+(九〃©R),则丸+〃的值是.
三、【培优训练】
【训练一】在复数列{a“}中,已知m=-i,a“=曷」+i(〃22,〃eN*),则…”。2。19=
z+tMH------------。2020
【训练二】在数学中,记表达式ad一历是由所确定的二阶行列式.若在复数域内,
Z|=l+i,Z2=±±Z3='Z2»则当|ZlI?|时,Z4的虚部为________.
1—iIZ3Z4I2
【训练三】(2022•青岛模拟)已知复数z满足忆一1一g1,则团的最小值为()
A.1B也一1C3D./+1
【训练四】已知复数2=%+夕@,yGR),且满足|z—2|=1,则丄的取值范围是.
X
【训练五】已知复数Z满足/=3+4i,且Z在复平面内对应的点位于第三象限.
⑴求复数z;
产]I
(2)设“WR,且Ill+zj202i+。|=2,求实数。的值.
【训练六】若虚数z同时满足下列两个条件:
①z+5是实数;
Z
②z+3的实部与虚部互为相反数.
这样的虚数是否存在?若存在,求出z;若不存在,请说明理由.
四、【强化测试】
【单选题】
1.设Z=-3+2i,则在复平面内z对应的点位于()
A.第一象限B.第二象限
C.第三象限D.第四象限
2.若复数z=—+l为纯虚数,则实数。=()
1+1
A.12B.-1
C.1D.2
3.已知复数z=(l+2i)(l+ai)(a6R),若zWR,则实数4=()
A.-B--2
2
C.2D.-2
4.如图,已知复数z在复平面内对应的向量为它,O为坐标原点,则团为()
A.1B.也
C.^3D.2
5.在复平面内,复数z对应的点与1+i对应的点关于实轴对称,则z等于()
A.1+iB.-1-i
C.-1+iD.1-i
6.若复数z满足z(l—i)=|l-i|+i,则z的实部为()
A号
B啦一1
2
D更
C.1
2
7.已知i是虚数单位,则“a=i”是“/=一1”的()
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
8.在复数范围内,已知p,q为实数,1—i是关于x的方程x2+*+q=0的一个根,则p+q
等于()
A.2B.1C.0D.-1
【多选题】
9.已知i为虚数单位,复数2=辻4,则以下说法正确的是()
2—i
A.z在复平面内对应的点在第一象限
B.z的虚部是一:
C.|z|=3\/5
D.若复数zi满足忻一z|=l,则㈤的最大值为1+?
10.若复数z满足(l+i>z=5+3i(其中i是虚数单位),则()
A.z的虚部为一i
B.z的模为而
C.z的共胡复数为4—i
D.z在复平面内对应的点位于第四象限
11.下面是关于复数z=」1的四个命题,其中真命题的是()
—1+i
A.|z|=2B.z2=2i
C.z的共拆复数为1+iD.z的虚部为一1
12.在复平面内,下列命题是真命题的是()
A.若复数z满足丄GR,则zdR
z
B.若复数z满足Z2《R,则ZGR
C.若复数Z|,Z2满足zmGR,则Zi=22
D.若复数zGR,则zGR
【填空题】
13.设复数Z满足W=|l—i|+i(i为虚数单位),则复数2=.
14.已知复数z=4+[2^1w(i为虚数单位)在复平面内对应的点在直线》一2夕+〃?=0上,则〃?
15.当复数z=(加+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 教师新学期工作计划教师工作计划个人
- 2024外贸单证员工作计划
- 职工年度工作计划
- 检验科培训计划范文
- 初中新学期开学自我介绍-新学期计划初中
- 公司部门管理计划制定参考
- 高三地理第一学期教学计划
- 岗位培训内容中学教师岗位培训工作计划
- 2024年大学学习部工作计划
- 2024秋季学校安全工作计划参考范文
- 水泥磨球配方案设计
- 《电子政务信息安全等级保护实施指南(试行)》
- SAP财务操作手册(共140页)
- 小兔子乖乖ppt课件.ppt
- 辛弃疾生平简介(课堂PPT)
- 小学生学业成绩等级制度-小学学业等级
- 过程审核VDA6.3检查表
- 常压矩形容器设计计算软件
- 装配工艺通用要求
- 钢结构工程环境保护和文明施工措施
- 8D培训课件 (ppt 43页)
评论
0/150
提交评论