2023-2024学年宁夏银川十五中重点达标名校中考考前最后一卷数学试卷含解析_第1页
2023-2024学年宁夏银川十五中重点达标名校中考考前最后一卷数学试卷含解析_第2页
2023-2024学年宁夏银川十五中重点达标名校中考考前最后一卷数学试卷含解析_第3页
2023-2024学年宁夏银川十五中重点达标名校中考考前最后一卷数学试卷含解析_第4页
2023-2024学年宁夏银川十五中重点达标名校中考考前最后一卷数学试卷含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年宁夏银川十五中重点达标名校中考考前最后一卷数学试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列计算正确的是()A.﹣= B.=±2C.a6÷a2=a3 D.(﹣a2)3=﹣a62.某校数学兴趣小组在一次数学课外活动中,随机抽查该校10名同学参加今年初中学业水平考试的体育成绩,得到结果如下表所示:下列说法正确的是()A.这10名同学体育成绩的中位数为38分B.这10名同学体育成绩的平均数为38分C.这10名同学体育成绩的众数为39分D.这10名同学体育成绩的方差为23.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F,若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠BED C.∠EBD D.2∠ABF4.下列计算正确的是()A.a3•a2=a6 B.(a3)2=a5 C.(ab2)3=ab6 D.a+2a=3a5.如图,已知直线a∥b∥c,直线m,n与a,b,c分别交于点A,C,E,B,D,F,若AC=4,CE=6,BD=3,则DF的值是()A.4 B.4.5 C.5 D.5.56.化简:(a+)(1﹣)的结果等于()A.a﹣2 B.a+2 C. D.7.如果菱形的一边长是8,那么它的周长是()A.16 B.32 C.163 D.3238.小宇妈妈上午在某水果超市买了16.5元钱的葡萄,晚上散步经过该水果超市时,发现同一批葡萄的价格降低了25%,小宇妈妈又买了16.5元钱的葡萄,结果恰好比早上多了0.5千克.若设早上葡萄的价格是x元/千克,则可列方程()A. B.C. D.9.如图,已知菱形ABCD的对角线AC.BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是()A. B. C. D.10.如图,AB是⊙O的弦,半径OC⊥AB于D,若CD=2,⊙O的半径为5,那么AB的长为()A.3 B.4 C.6 D.811.下列运算结果正确的是()A.a3+a4=a7 B.a4÷a3=a C.a3•a2=2a3 D.(a3)3=a612.《九章算术》是我国古代内容极为丰富的数学名著.书中有下列问题“今有勾八步,股十五步,问勾中容圆径几何?”其意思是“今有直角三角形(如图),勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是多少?”()A.3步 B.5步 C.6步 D.8步二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若与是同类项,则的立方根是.14.如图,点A为函数y=(x>0)图象上一点,连结OA,交函数y=(x>0)的图象于点B,点C是x轴上一点,且AO=AC,则△OBC的面积为____.15.如图,已知圆O的半径为2,A是圆上一定点,B是OA的中点,E是圆上一动点,以BE为边作正方形BEFG(B、E、F、G四点按逆时针顺序排列),当点E绕⊙O圆周旋转时,点F的运动轨迹是_________图形16.已知:如图,AD、BE分别是△ABC的中线和角平分线,AD⊥BE,AD=BE=6,则AC的长等于______.17.如图,在△ABC中,CA=CB,∠ACB=90°,AB=4,点D为AB的中点,以点D为圆心作圆,半圆恰好经过三角形的直角顶点C,以点D为顶点,作90°的∠EDF,与半圆交于点E,F,则图中阴影部分的面积是____.18.经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段CD是△ABC的“和谐分割线”,△ACD为等腰三角形,△CBD和△ABC相似,∠A=46°,则∠ACB的度数为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,△ABC中,AB=AC=4,D、E分别为AB、AC的中点,连接CD,过E作EF∥DC交BC的延长线于F;(1)求证:DE=CF;(2)若∠B=60°,求EF的长.20.(6分)讲授“轴对称”时,八年级教师设计了如下:四种教学方法:①教师讲,学生听②教师让学生自己做③教师引导学生画图发现规律④教师让学生对折纸,观察发现规律,然后画图为调查教学效果,八年级教师将上述教学方法作为调研内容发到全年级8个班420名同学手中,要求每位同学选出自己最喜欢的一种.他随机抽取了60名学生的调查问卷,统计如图(1)请将条形统计图补充完整;(2)计算扇形统计图中方法③的圆心角的度数是;(3)八年级同学中最喜欢的教学方法是哪一种?选择这种教学方法的约有多少人?21.(6分)如图所示,飞机在一定高度上沿水平直线飞行,先在点处测得正前方小岛的俯角为,面向小岛方向继续飞行到达处,发现小岛在其正后方,此时测得小岛的俯角为.如果小岛高度忽略不计,求飞机飞行的高度(结果保留根号).22.(8分)某品牌牛奶供应商提供A,B,C,D四种不同口味的牛奶供学生饮用.某校为了了解学生对不同口味的牛奶的喜好,对全校订牛奶的学生进行了随机调查,并根据调查结果绘制了如下两幅不完整的统计图.根据统计图的信息解决下列问题:(1)本次调查的学生有多少人?(2)补全上面的条形统计图;(3)扇形统计图中C对应的中心角度数是;(4)若该校有600名学生订了该品牌的牛奶,每名学生每天只订一盒牛奶,要使学生能喝到自己喜欢的牛奶,则该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约多少盒?23.(8分)某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.该网店甲、乙两种羽毛球每筒的售价各是多少元?根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.①若设购进甲种羽毛球m筒,则该网店有哪几种进货方案?②若所购进羽毛球均可全部售出,请求出网店所获利润W(元)与甲种羽毛球进货量m(筒)之间的函数关系式,并说明当m为何值时所获利润最大?最大利润是多少?24.(10分)如图,在图中求作⊙P,使⊙P满足以线段MN为弦且圆心P到∠AOB两边的距离相等.(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑)25.(10分)赵亮同学想利用影长测量学校旗杆的高度,如图,他在某一时刻立1米长的标杆测得其影长为1.2米,同时旗杆的投影一部分在地面上,另一部分在某一建筑的墙上,分别测得其长度为9.6米和2米,则学校旗杆的高度为________米.26.(12分)为倡导“低碳生活”,人们常选择以自行车作为代步工具、图(1)所示的是一辆自行车的实物图.图(2)是这辆自行车的部分几何示意图,其中车架档AC与CD的长分别为45cm和60cm,且它们互相垂直,座杆CE的长为20cm.点A、C、E在同一条直线上,且∠CAB=75°.(参考数据:sin75°=0.966,cos75°=0.259,tan75°=3.732)(1)求车架档AD的长;(2)求车座点E到车架档AB的距离(结果精确到1cm).27.(12分)在等边△ABC外侧作直线AM,点C关于AM的对称点为D,连接BD交AM于点E,连接CE,CD,AD.(1)依题意补全图1,并求∠BEC的度数;(2)如图2,当∠MAC=30°时,判断线段BE与DE之间的数量关系,并加以证明;(3)若0°<∠MAC<120°,当线段DE=2BE时,直接写出∠MAC的度数.

参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、D【解析】

根据二次根式的运算法则,同类二次根式的判断,开算术平方根,同底数幂的除法及幂的乘方运算.【详解】A.不是同类二次根式,不能合并,故A选项错误;B.=2≠±2,故B选项错误;C.

a6÷a2=a4≠a3,故C选项错误;D.

(−a2)3=−a6,故D选项正确.故选D.【点睛】本题主要考查了二次根式的运算法则,开算术平方根,同底数幂的除法及幂的乘方运算,熟记法则是解题的关键.2、C【解析】试题分析:10名学生的体育成绩中39分出现的次数最多,众数为39;第5和第6名同学的成绩的平均值为中位数,中位数为:=39;平均数==38.4方差=[(36﹣38.4)2+2×(37﹣38.4)2+(38﹣38.4)2+4×(39﹣38.4)2+2×(40﹣38.4)2]=1.64;∴选项A,B、D错误;故选C.考点:方差;加权平均数;中位数;众数.3、C【解析】

根据全等三角形的判定与性质,可得∠ACB=∠DBE的关系,根据三角形外角的性质,可得答案.【详解】在△ABC和△DEB中,,所以△ABC△BDE(SSS),所以∠ACB=∠DBE.故本题正确答案为C.【点睛】.本题主要考查全等三角形的判定与性质,熟悉掌握是关键.4、D【解析】

根据同底数幂的乘法、积的乘方与幂的乘方及合并同类项的运算法则进行计算即可得出正确答案.【详解】解:A.x4•x4=x4+4=x8≠x16,故该选项错误;B.(a3)2=a3×2=a6≠a5,故该选项错误;C.(ab2)3=a3b6≠ab6,故该选项错误;D.a+2a=(1+2)a=3a,故该选项正确;故选D.考点:1.同底数幂的乘法;2.积的乘方与幂的乘方;3.合并同类项.5、B【解析】试题分析:根据平行线分线段成比例可得,然后根据AC=1,CE=6,BD=3,可代入求解DF=1.2.故选B考点:平行线分线段成比例6、B【解析】

解:原式====.故选B.考点:分式的混合运算.7、B【解析】

根据菱形的四边相等,可得周长【详解】菱形的四边相等∴菱形的周长=4×8=32故选B.【点睛】本题考查了菱形的性质,并灵活掌握及运用菱形的性质8、B【解析】分析:根据数量=,可知第一次买了千克,第二次买了,根据第二次恰好比第一次多买了0.5千克列方程即可.详解:设早上葡萄的价格是x元/千克,由题意得,.故选B.点睛:本题考查了分式方程的实际应用,解题的关键是读懂题意,找出列方程所用到的等量关系.9、D【解析】

根据菱形的性质得出BO、CO的长,在RT△BOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BC×AE,可得出AE的长度.【详解】∵四边形ABCD是菱形,∴CO=AC=3,BO=BD=,AO⊥BO,∴.∴.又∵,∴BC·AE=24,即.故选D.点睛:此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分.10、D【解析】

连接OA,构建直角三角形AOD;利用垂径定理求得AB=2AD;然后在直角三角形AOD中由勾股定理求得AD的长度,从而求得AB=2AD=1.【详解】连接OA.∵⊙O的半径为5,CD=2,∵OD=5-2=3,即OD=3;又∵AB是⊙O的弦,OC⊥AB,∴AD=AB;在直角三角形ODC中,根据勾股定理,得AD==4,∴AB=1.故选D.【点睛】本题考查了垂径定理、勾股定理.解答该题的关键是通过作辅助线OA构建直角三角形,在直角三角形中利用勾股定理求相关线段的长度.11、B【解析】

分别根据同底数幂的乘法及除法法则、幂的乘方与积的乘方法则及合并同类项的法则对各选项进行逐一分析即可.【详解】A.a3+a4≠a7,不是同类项,不能合并,本选项错误;B.a4÷a3=a4-3=a;,本选项正确;C.a3•a2=a5;,本选项错误;D.(a3)3=a9,本选项错误.故选B【点睛】本题考查的是同底数幂的乘法及除法法则、幂的乘方与积的乘方法则及合并同类项的法则等知识,比较简单.12、C【解析】试题解析:根据勾股定理得:斜边为则该直角三角形能容纳的圆形(内切圆)半径(步),即直径为6步,故选C二、填空题:(本大题共6个小题,每小题4分,共24分.)13、2.【解析】试题分析:若与是同类项,则:,解方程得:.∴=2﹣3×(﹣2)=8.8的立方根是2.故答案为2.考点:2.立方根;2.合并同类项;3.解二元一次方程组;4.综合题.14、6【解析】

根据题意可以分别设出点A、点B的坐标,根据点O、A、B在同一条直线上可以得到A、B的坐标之间的关系,由AO=AC可知点C的横坐标是点A的横坐标的2倍,从而可以得到△OBC的面积.【详解】设点A的坐标为(a,),点B的坐标为(b,),∵点C是x轴上一点,且AO=AC,∴点C的坐标是(2a,0),设过点O(0,0),A(a,)的直线的解析式为:y=kx,∴=k⋅a,解得k=,又∵点B(b,)在y=x上,∴=⋅b,解得,=或=−(舍去),∴S△OBC==6.故答案为:6.【点睛】本题考查了等腰三角形的性质与反比例函数的图象以及三角形的面积公式,解题的关键是熟练的掌握等腰三角形的性质与反比例函数的图象以及三角形的面积公式.15、圆【解析】

根据题意作图,即可得到点F的运动轨迹.【详解】如图,根据题意作下图,可知F的运动轨迹为圆⊙O’.【点睛】此题主要考查动点的作图问题,解题的关键是根据题意作出相应的图形,方可判断.16、9【解析】试题分析:如图,过点C作CF⊥AD交AD的延长线于点F,可得BE∥CF,易证△BGD≌△CFD,所以GD=DF,BG=CF;又因BE是△ABC的角平分线且AD⊥BE,BG是公共边,可证得△ABG≌△DBG,所以AG=GD=3;由BE∥CF可得△AGE∽△AFC,所以,即FC=3GE;又因BE=BG+GE=3GE+GE=4GE=6,所以GE=,BG=;在Rt△AFC中,AF=AG+GD+GF=9,CF=BG=,由勾股定理可求得AC=952.考点:全等三角形的判定及性质;相似三角形的判定及性质;勾股定理.17、π﹣1.【解析】

连接CD,作DM⊥BC,DN⊥AC,证明△DMG≌△DNH,则S四边形DGCH=S四边形DMCN,求得扇形FDE的面积,则阴影部分的面积即可求得.【详解】连接CD,作DM⊥BC,DN⊥AC.∵CA=CB,∠ACB=90°,点D为AB的中点,∴DC=AB=1,四边形DMCN是正方形,DM=.则扇形FDE的面积是:=π.∵CA=CB,∠ACB=90°,点D为AB的中点,∴CD平分∠BCA.又∵DM⊥BC,DN⊥AC,∴DM=DN.∵∠GDH=∠MDN=90°,∴∠GDM=∠HDN.在△DMG和△DNH中,∵,∴△DMG≌△DNH(AAS),∴S四边形DGCH=S四边形DMCN=1.则阴影部分的面积是:π﹣1.故答案为π﹣1.【点睛】本题考查了三角形的全等的判定与扇形的面积的计算的综合题,正确证明△DMG≌△DNH,得到S四边形DGCH=S四边形DMCN是关键.18、113°或92°【解析】解:∵△BCD∽△BAC,∴∠BCD=∠A=46°.∵△ACD是等腰三角形,∠ADC>∠BCD,∴∠ADC>∠A,即AC≠CD.①当AC=AD时,∠ACD=∠ADC=(180°﹣46°)÷2=67°,∴∠ACB=67°+46°=113°;②当DA=DC时,∠ACD=∠A=46°,∴∠ACB=46°+46°=92°.故答案为113°或92°.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、证明见解析;.【解析】

根据两组对边分别平行的四边形是平行四边形即可证明;只要求出CD即可解决问题.【详解】证明:、E分别是AB、AC的中点,又四边形CDEF为平行四边形.,,又为AB中点,在中,,,四边形CDEF是平行四边形,.【点睛】本题考查平行四边形的判定和性质、勾股定理、三角形的中位线定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20、解:(1)见解析;(2)108°;(3)最喜欢方法④,约有189人.【解析】

(1)由题意可知:喜欢方法②的学生有60-6-18-27=9(人);(2)求方法③的圆心角应先求所占比值,再乘以360°;(3)根据条形的高低可判断喜欢方法④的学生最多,人数应该等于总人数乘以喜欢方法④所占的比例;【详解】(1)方法②人数为60−6−18−27=9(人);补条形图如图:(2)方法③的圆心角为故答案为108°(3)由图可以看出喜欢方法④的学生最多,人数为(人);【点睛】考查扇形统计图,条形统计图,用样本估计总体,比较基础,难度不大,是中考常考题型.21、【解析】

过点C作CD⊥AB,由∠CBD=45°知BD=CD=x,由∠ACD=30°知AD==x,根据AD+BD=AB列方程求解可得.【详解】解:过点C作CD⊥AB于点D,设CD=x,∵∠CBD=45°,∴BD=CD=x,在Rt△ACD中,∵,∴AD====x,由AD+BD=AB可得x+x=10,解得:x=5﹣5,答:飞机飞行的高度为(5﹣5)km.22、(1)150人;(2)补图见解析;(3)144°;(4)300盒.【解析】

(1)根据喜好A口味的牛奶的学生人数和所占百分比,即可求出本次调查的学生数.(2)用调查总人数减去A、B、D三种喜好不同口味牛奶的人数,求出喜好C口味牛奶的人数,补全统计图.再用360°乘以喜好C口味的牛奶人数所占百分比求出对应中心角度数.(3)用总人数乘以A、B口味牛奶喜欢人数所占的百分比得出答案.【详解】解:(1)本次调查的学生有30÷20%=150人;(2)C类别人数为150﹣(30+45+15)=60人,补全条形图如下:(3)扇形统计图中C对应的中心角度数是360°×=144°故答案为144°(4)600×()=300(人),答:该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约300盒.【点睛】本题考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得出必要的信息是解题的关键.23、(1)该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)①进货方案有3种,具体见解析;②当m=78时,所获利润最大,最大利润为1390元.【解析】【分析】(1)设甲种羽毛球每筒的售价为x元,乙种羽毛球每筒的售价为y元,由条件可列方程组,则可求得答案;(2)①设购进甲种羽毛球m筒,则乙种羽毛球为(200﹣m)筒,由条件可得到关于m的不等式组,则可求得m的取值范围,且m为整数,则可求得m的值,即可求得进货方案;②用m可表示出W,可得到关于m的一次函数,利用一次函数的性质可求得答案.【详解】(1)设甲种羽毛球每筒的售价为x元,乙种羽毛球每筒的售价为y元,根据题意可得,解得,答:该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)①若购进甲种羽毛球m筒,则乙种羽毛球为(200﹣m)筒,根据题意可得,解得75<m≤78,∵m为整数,∴m的值为76、77、78,∴进货方案有3种,分别为:方案一,购进甲种羽毛球76筒,乙种羽毛球为124筒,方案二,购进甲种羽毛球77筒,乙种羽毛球为123筒,方案一,购进甲种羽毛球78筒,乙种羽毛球为122筒;②根据题意可得W=(60﹣50)m+(45﹣40)(200﹣m)=5m+1000,∵5>0,∴W随m的增大而增大,且75<m≤78,∴当m=78时,W最大,W最大值为1390,答:当m=78时,所获利润最大,最大利润为1390元.【点睛】本题考查了二元一次方程组的应用、一元一次不等式组的应用、一次函数的应用,弄清题意找准等量关系列出方程组、找准不等关系列出不等式组、找准各量之间的数量关系列出函数解析式是解题的关键.24、见解析.【解析】试题分析:先做出∠AOB的角平分线,再求出线段MN的垂直平分线就得到点P.试题解析:考点:尺规作图角平分线和线段的垂直平分线、圆的性质.25、10【解析】试题分析:根据相似的性质可得:1:1.2=x:9.6,则x=8,则旗杆的高度为8+2=10米.考点:相似的应用26、63cm.【解析】试题分析:(1)在RtΔACD,AC=45,DC=60,根据勾股定理可得AD=A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论