版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届辽宁省朝阳市建平县重点中学中考猜题数学试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.设0<k<2,关于x的一次函数y=(k-2)x+2,当1≤x≤2时,y的最小值是()A.2k-2B.k-1C.kD.k+12.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A. B. C. D.3.如图,⊙O是△ABC的外接圆,∠B=60°,⊙O的半径为4,则AC的长等于()A.4 B.6 C.2 D.84.如果将直线l1:y=2x﹣2平移后得到直线l2:y=2x,那么下列平移过程正确的是()A.将l1向左平移2个单位 B.将l1向右平移2个单位C.将l1向上平移2个单位 D.将l1向下平移2个单位5.如图,点A、B、C都在⊙O上,若∠AOC=140°,则∠B的度数是()A.70° B.80° C.110° D.140°6.在同一直角坐标系中,函数y=kx-k与(k≠0)的图象大致是()A. B.C. D.7.已知一元二次方程的两个实数根分别是x1、x2则x12x2x1x22的值为()A.-6 B.-3 C.3 D.68.在一个不透明的口袋里有红、黄、蓝三种颜色的小球,这些球除颜色外都相同,其中有5个红球,4个蓝球.若随机摸出一个蓝球的概率为,则随机摸出一个黄球的概率为()A. B. C. D.9.如图,四边形ABCD是平行四边形,点E在BA的延长线上,点F在BC的延长线上,连接EF,分别交AD,CD于点G,H,则下列结论错误的是()A. B. C. D.10.如图,在直角坐标系中,等腰直角△ABO的O点是坐标原点,A的坐标是(﹣4,0),直角顶点B在第二象限,等腰直角△BCD的C点在y轴上移动,我们发现直角顶点D点随之在一条直线上移动,这条直线的解析式是()A.y=﹣2x+1 B.y=﹣x+2 C.y=﹣3x﹣2 D.y=﹣x+2二、填空题(共7小题,每小题3分,满分21分)11.如图,与是以点为位似中心的位似图形,相似比为,,,若点的坐标是,则点的坐标是__________.12.一个圆锥的母线长为5cm,底面半径为1cm,那么这个圆锥的侧面积为_____cm1.13.如图,在Rt△AOB中,∠AOB=90°,OA=2,OB=1,将Rt△AOB绕点O顺时针旋转90°后得到Rt△FOE,将线段EF绕点E逆时针旋转90°后得到线段ED,分別以O、E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分的面积是__.14.正八边形的中心角为______度.15.如图,在梯形ABCD中,AD∥BC,∠A=90°,点E在边AB上,AD=BE,AE=BC,由此可以知道△ADE旋转后能与△BEC重合,那么旋转中心是_____.16.如图,在矩形ABCD中,AB=4,BC=5,点E是边CD的中点,将△ADE沿AE折叠后得到△AFE.延长AF交边BC于点G,则CG为_____.17.双曲线、在第一象限的图像如图,过y2上的任意一点A,作x轴的平行线交y1于B,交y轴于C,过A作x轴的垂线交y1于D,交x轴于E,连结BD、CE,则=.三、解答题(共7小题,满分69分)18.(10分)某商场用24000元购入一批空调,然后以每台3000元的价格销售,因天气炎热,空调很快售完,商场又以52000元的价格再次购入该种型号的空调,数量是第一次购入的2倍,但购入的单价上调了200元,每台的售价也上调了200元.商场第一次购入的空调每台进价是多少元?商场既要尽快售完第二次购入的空调,又要在这两次空调销售中获得的利润率不低于22%,打算将第二次购入的部分空调按每台九五折出售,最多可将多少台空调打折出售?19.(5分)顶点为D的抛物线y=﹣x2+bx+c交x轴于A、B(3,0),交y轴于点C,直线y=﹣x+m经过点C,交x轴于E(4,0).求出抛物线的解析式;如图1,点M为线段BD上不与B、D重合的一个动点,过点M作x轴的垂线,垂足为N,设点M的横坐标为x,四边形OCMN的面积为S,求S与x之间的函数关系式,并求S的最大值;点P为x轴的正半轴上一个动点,过P作x轴的垂线,交直线y=﹣x+m于G,交抛物线于H,连接CH,将△CGH沿CH翻折,若点G的对应点F恰好落在y轴上时,请直接写出点P的坐标.20.(8分)如图,△ABC中,AB=8厘米,AC=16厘米,点P从A出发,以每秒2厘米的速度向B运动,点Q从C同时出发,以每秒3厘米的速度向A运动,其中一个动点到端点时,另一个动点也相应停止运动,设运动的时间为t.⑴用含t的代数式表示:AP=,AQ=.⑵当以A,P,Q为顶点的三角形与△ABC相似时,求运动时间是多少?21.(10分)如图,已知抛物线y=x2+bx+c经过△ABC的三个顶点,其中点A(0,1),点B(﹣9,10),AC∥x轴,点P是直线AC下方抛物线上的动点.(1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.22.(10分)计算:÷+8×2﹣1﹣(+1)0+2•sin60°.23.(12分)为厉行节能减排,倡导绿色出行,今年3月以来.“共享单车”(俗称“小黄车”)公益活动登陆我市中心城区.某公司拟在甲、乙两个街道社区投放一批“小黄车”,这批自行车包括A、B两种不同款型,请回答下列问题:问题1:单价该公司早期在甲街区进行了试点投放,共投放A、B两型自行车各50辆,投放成本共计7500元,其中B型车的成本单价比A型车高10元,A、B两型自行车的单价各是多少?问题2:投放方式该公司决定采取如下投放方式:甲街区每1000人投放a辆“小黄车”,乙街区每1000人投放辆“小黄车”,按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆,如果两个街区共有15万人,试求a的值.24.(14分)解方程组:
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】
先根据0<k<1判断出k-1的符号,进而判断出函数的增减性,根据1≤x≤1即可得出结论.【详解】∵0<k<1,∴k-1<0,∴此函数是减函数,∵1≤x≤1,∴当x=1时,y最小=1(k-1)+1=1k-1.故选A.【点睛】本题考查的是一次函数的性质,熟知一次函数y=kx+b(k≠0)中,当k<0,b>0时函数图象经过一、二、四象限是解答此题的关键.2、B【解析】由中心对称图形的定义:“把一个图形绕一个点旋转180°后,能够与自身完全重合,这样的图形叫做中心对称图形”分析可知,上述图形中,A、C、D都不是中心对称图形,只有B是中心对称图形.故选B.3、A【解析】
解:连接OA,OC,过点O作OD⊥AC于点D,∵∠AOC=2∠B,且∠AOD=∠COD=∠AOC,∴∠COD=∠B=60°;在Rt△COD中,OC=4,∠COD=60°,∴CD=OC=2,∴AC=2CD=4.故选A.【点睛】本题考查三角形的外接圆;勾股定理;圆周角定理;垂径定理.4、C【解析】
根据“上加下减”的原则求解即可.【详解】将函数y=2x﹣2的图象向上平移2个单位长度,所得图象对应的函数解析式是y=2x.故选:C.【点睛】本题考查的是一次函数的图象与几何变换,熟知函数图象变换的法则是解答此题的关键.5、C【解析】分析:作对的圆周角∠APC,如图,利用圆内接四边形的性质得到∠P=40°,然后根据圆周角定理求∠AOC的度数.详解:作对的圆周角∠APC,如图,∵∠P=∠AOC=×140°=70°∵∠P+∠B=180°,∴∠B=180°﹣70°=110°,故选:C.点睛:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.6、D【解析】
根据k值的正负性分别判断一次函数y=kx-k与反比例函数(k≠0)所经过象限,即可得出答案.【详解】解:有两种情况,当k>0是时,一次函数y=kx-k的图象经过一、三、四象限,反比例函数(k≠0)的图象经过一、三象限;当k<0时,一次函数y=kx-k的图象经过一、二、四象限,反比例函数(k≠0)的图象经过二、四象限;根据选项可知,D选项满足条件.故选D.【点睛】本题考查了一次函数、反比例函数的图象.正确这两种图象所经过的象限是解题的关键.7、B【解析】
根据根与系数的关系得到x1+x2=1,x1•x2=﹣1,再把x12x2+x1x22变形为x1•x2(x1+x2),然后利用整体代入的方法计算即可.【详解】根据题意得:x1+x2=1,x1•x2=﹣1,所以原式=x1•x2(x1+x2)=﹣1×1=-1.故选B.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2,x1•x2.8、A【解析】
设黄球有x个,根据摸出一个球是蓝球的概率是,得出黄球的个数,再根据概率公式即可得出随机摸出一个黄球的概率.【详解】解:设袋子中黄球有x个,根据题意,得:,解得:x=3,即袋中黄球有3个,所以随机摸出一个黄球的概率为,故选A.【点睛】此题主要考查了概率公式的应用,用到的知识点为:概率=所求情况数与总情况数之比.得到所求的情况数是解决本题的关键.9、C【解析】试题解析:∵四边形ABCD是平行四边形,故选C.10、D【解析】
抓住两个特殊位置:当BC与x轴平行时,求出D的坐标;C与原点重合时,D在y轴上,求出此时D的坐标,设所求直线解析式为y=kx+b,将两位置D坐标代入得到关于k与b的方程组,求出方程组的解得到k与b的值,即可确定出所求直线解析式.【详解】当BC与x轴平行时,过B作BE⊥x轴,过D作DF⊥x轴,交BC于点G,如图1所示.∵等腰直角△ABO的O点是坐标原点,A的坐标是(﹣4,0),∴AO=4,∴BC=BE=AE=EO=GF=OA=1,OF=DG=BG=CG=BC=1,DF=DG+GF=3,∴D坐标为(﹣1,3);当C与原点O重合时,D在y轴上,此时OD=BE=1,即D(0,1),设所求直线解析式为y=kx+b(k≠0),将两点坐标代入得:,解得:.则这条直线解析式为y=﹣x+1.故选D.【点睛】本题属于一次函数综合题,涉及的知识有:待定系数法确定一次函数解析式,等腰直角三角形的性质,坐标与图形性质,熟练运用待定系数法是解答本题的关键.二、填空题(共7小题,每小题3分,满分21分)11、(2,2)【解析】分析:首先解直角三角形得出A点坐标,再利用位似是特殊的相似,若两个图形与是以点为位似中心的位似图形,相似比是k,上一点的坐标是则在中,它的对应点的坐标是或,进而求出即可.详解:与是以点为位似中心的位似图形,,,若点的坐标是,过点作交于点E.点的坐标为:与的相似比为,点的坐标为:即点的坐标为:故答案为:点睛:考查位似图形的性质,熟练掌握位似图形的性质是解题的关键.12、【解析】分析:根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式求解.详解:∵圆锥的底面半径为5cm,∴圆锥的底面圆的周长=1π•5=10π,∴圆锥的侧面积=•10π•1=10π(cm1).故答案为10π.点睛:本题考查了圆锥的侧面积的计算:圆锥的侧面展开图为扇形,扇形的弧长为圆锥的底面周长,扇形的半径为圆锥的母线长.也考查了扇形的面积公式:S=•l•R,(l为弧长).13、.【解析】
作DH⊥AE于H,根据勾股定理求出AB,根据阴影部分面积=△ADE的面积+△EOF的面积+扇形AOF的面积-扇形DEF的面积,利用扇形面积公式计算即可.【详解】解:如图作DH⊥AE于H,AOB=,OA=2,OB=1,AB=,由旋转的性质可知OE=OB=1,DE=EF=AB=,可得△DHE≌△BOA,DH=OB=1,阴影部分面积=△ADE的面积+△EOF的面积+扇形AOF的面积-扇形DEF的面积==,故答案:.【点睛】本题主要考查扇形的计算公式,正确表示出阴影部分的面积是计算的关键.14、45°【解析】
运用正n边形的中心角的计算公式计算即可.【详解】解:由正n边形的中心角的计算公式可得其中心角为,故答案为45°.【点睛】本题考查了正n边形中心角的计算.15、CD的中点【解析】
根据旋转的性质,其中对应点到旋转中心的距离相等,于是得到结论.【详解】∵△ADE旋转后能与△BEC重合,∴△ADE≌△BEC,∴∠AED=∠BCE,∠B=∠A=90°,∠ADE=∠BEC,DE=EC,∴∠AED+∠BEC=90°,∴∠DEC=90°,∴△DEC是等腰直角三角形,∴D与E,E与C是对应顶点,∵CD的中点到D,E,C三点的距离相等,∴旋转中心是CD的中点,故答案为:CD的中点.【点睛】本题考查了旋转的性质,等腰直角三角形的性质,关键是明确旋转中心的概念.16、【解析】
如图,作辅助线,首先证明△EFG≌△ECG,得到FG=CG(设为x),∠FEG=∠CEG;同理可证AF=AD=5,∠FEA=∠DEA,进而证明△AEG为直角三角形,运用相似三角形的性质即可解决问题.【详解】连接EG;∵四边形ABCD为矩形,∴∠D=∠C=90°,DC=AB=4;由题意得:EF=DE=EC=2,∠EFG=∠D=90°;在Rt△EFG与Rt△ECG中,,∴Rt△EFG≌Rt△ECG(HL),∴FG=CG(设为x),∠FEG=∠CEG;同理可证:AF=AD=5,∠FEA=∠DEA,∴∠AEG=×180°=90°,而EF⊥AG,可得△EFG∽△AFE,∴∴22=5•x,∴x=,∴CG=,故答案为:.【点睛】此题考查矩形的性质,翻折变换的性质,以考查全等三角形的性质及其应用、射影定理等几何知识点为核心构造而成;对综合的分析问题解决问题的能力提出了一定的要求.17、【解析】
设A点的横坐标为a,把x=a代入得,则点A的坐标为(a,).∵AC⊥y轴,AE⊥x轴,∴C点坐标为(0,),B点的纵坐标为,E点坐标为(a,0),D点的横坐标为a.∵B点、D点在上,∴当y=时,x=;当x=a,y=.∴B点坐标为(,),D点坐标为(a,).∴AB=a-=,AC=a,AD=-=,AE=.∴AB=AC,AD=AE.又∵∠BAD=∠CAD,∴△BAD∽△CAD.∴.三、解答题(共7小题,满分69分)18、(1)2400元;(2)8台.【解析】试题分析:(1)设商场第一次购入的空调每台进价是x元,根据题目条件“商场又以52000元的价格再次购入该种型号的空调,数量是第一次购入的2倍,但购入的单价上调了200元,每台的售价也上调了200元”列出分式方程解答即可;
(2)设最多将台空调打折出售,根据题目条件“在这两次空调销售中获得的利润率不低于22%,打算将第二次购入的部分空调按每台九五折出售”列出不等式并解答即可.试题解析:(1)设第一次购入的空调每台进价是x元,依题意,得解得经检验,是原方程的解.答:第一次购入的空调每台进价是2400元.(2)由(1)知第一次购入空调的台数为24000÷2400=10(台),第二次购入空调的台数为10×2=20(台).设第二次将y台空调打折出售,由题意,得解得答:最多可将8台空调打折出售.19、(1)y=﹣x2+2x+3;(2)S=﹣(x﹣)2+;当x=时,S有最大值,最大值为;(3)存在,点P的坐标为(4,0)或(,0).【解析】
(1)将点E代入直线解析式中,可求出点C的坐标,将点C、B代入抛物线解析式中,可求出抛物线解析式.(2)将抛物线解析式配成顶点式,可求出点D的坐标,设直线BD的解析式,代入点B、D,可求出直线BD的解析式,则MN可表示,则S可表示.(3)设点P的坐标,则点G的坐标可表示,点H的坐标可表示,HG长度可表示,利用翻折推出CG=HG,列等式求解即可.【详解】(1)将点E代入直线解析式中,0=﹣×4+m,解得m=3,∴解析式为y=﹣x+3,∴C(0,3),∵B(3,0),则有,解得,∴抛物线的解析式为:y=﹣x2+2x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4),设直线BD的解析式为y=kx+b,代入点B、D,,解得,∴直线BD的解析式为y=﹣2x+6,则点M的坐标为(x,﹣2x+6),∴S=(3+6﹣2x)•x•=﹣(x﹣)2+,∴当x=时,S有最大值,最大值为.(3)存在,如图所示,设点P的坐标为(t,0),则点G(t,﹣t+3),H(t,﹣t2+2t+3),∴HG=|﹣t2+2t+3﹣(﹣t+3)|=|t2﹣t|CG==t,∵△CGH沿GH翻折,G的对应点为点F,F落在y轴上,而HG∥y轴,∴HG∥CF,HG=HF,CG=CF,∠GHC=∠CHF,∴∠FCH=∠CHG,∴∠FCH=∠FHC,∴∠GCH=∠GHC,∴CG=HG,∴|t2﹣t|=t,当t2﹣t=t时,解得t1=0(舍),t2=4,此时点P(4,0).当t2﹣t=﹣t时,解得t1=0(舍),t2=,此时点P(,0).综上,点P的坐标为(4,0)或(,0).【点睛】此题考查了待定系数法求函数解析式,点坐标转换为线段长度,几何图形与二次函数结合的问题,最后一问推出CG=HG为解题关键.20、(1)AP=2t,AQ=16﹣3t;(2)运动时间为秒或1秒.【解析】
(1)根据路程=速度时间,即可表示出AP,AQ的长度.(2)此题应分两种情况讨论.(1)当△APQ∽△ABC时;(2)当△APQ∽△ACB时.利用相似三角形的性质求解即可.【详解】(1)AP=2t,AQ=16﹣3t.(2)∵∠PAQ=∠BAC,∴当时,△APQ∽△ABC,即,解得当时,△APQ∽△ACB,即,解得t=1.∴运动时间为秒或1秒.【点睛】考查相似三角形的判定与性质,掌握相似三角形的判定定理与性质定理是解题的关键.注意不要漏解.21、(1)抛物线的解析式为y=x2-2x+1,(2)四边形AECP的面积的最大值是,点P(,﹣);(3)Q(4,1)或(-3,1).【解析】
(1)把点A,B的坐标代入抛物线的解析式中,求b,c;(2)设P(m,m2−2m+1),根据S四边形AECP=S△AEC+S△APC,把S四边形AECP用含m式子表示,根据二次函数的性质求解;(3)设Q(t,1),分别求出点A,B,C,P的坐标,求出AB,BC,CA;用含t的式子表示出PQ,CQ,判断出∠BAC=∠PCA=45°,则要分两种情况讨论,根据相似三角形的对应边成比例求t.【详解】解:(1)将A(0,1),B(9,10)代入函数解析式得:×81+9b+c=10,c=1,解得b=−2,c=1,所以抛物线的解析式y=x2−2x+1;(2)∵AC∥x轴,A(0,1),∴x2−2x+1=1,解得x1=6,x2=0(舍),即C点坐标为(6,1),∵点A(0,1),点B(9,10),∴直线AB的解析式为y=x+1,设P(m,m2−2m+1),∴E(m,m+1),∴PE=m+1−(m2−2m+1)=−m2+3m.∵AC⊥PE,AC=6,∴S四边形AECP=S△AEC+S△APC=AC⋅EF+AC⋅PF=AC⋅(EF+PF)=AC⋅EP=×6(−m2+3m)=−m2+9m.∵0<m<6,∴当m=时,四边形AECP的面积最大值是,此时P();(3)∵y=x2−2x+1=(x−3)2−2,P(3,−2),PF=yF−yp=3,CF=xF−xC=3,∴PF=CF,∴∠PCF=45∘,同理可得∠EAF=45∘,∴∠PCF=∠EAF,∴在直线AC上存在满足条件的点Q,设Q(t,1)且AB=,AC=6,CP=,∵以C,P,Q为顶点的三角形与△ABC相似,①当△CPQ∽△ABC时,CQ:AC=CP:AB,(6−t):6=,解得t
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大班数学公开课教案及教学反思《彩色纸条》
- 2024年保管合同:某人将财物交给他人保管的合同
- 制造业设备维护与隐患排查管理制度
- 一年级下册数学教案-2.十几减5、4、3、2-人教新课标
- 《求一个数比另一个数多几(少几)》(教案)-一年级下册数学人教版
- 一年级下册数学教案-第6单元 两位数减一位数的退位减法-人教新课标2014
- 2024年供应链融资协议
- 农业机械固定资产转让合同模板
- 2024年企业形象策划与设计合同
- 一年级下册数学教案-100以内数的认识 人教新课标
- S7-200-PLC编程及应用(廖常初第2版)习题参考答案
- 电机绝对零点校正完整版
- 341农业知识综合三考研近年考试真题汇总(含答案)
- 小区安防工作规范
- 北师大数学六年级下册第一单元《圆柱与圆锥》单元整体解读课件
- 2023年江苏专转本英语真题及解析(全)
- 幼儿园中班美术:《向日葵》 课件
- 自动化控制仪表安装工程定额
- 普希金《驿站长》阅读练习及答案
- 《生物多样性公约》及国际组织课件
- 个人信用报告异议申请表
评论
0/150
提交评论