版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题30分)一、单选题(10小题,每小题3分,共计30分)1、下列几何体中,截面不可能是长方形的是()A.长方体 B.圆柱体C.球体 D.三棱柱2、下列方程中,解为的方程是()A. B. C. D.3、下列语句中,不正确的是()A.0是单项式 B.多项式的次数是4C.的系数是 D.的系数和次数都是14、如图,一个几何体是由六个大小相同且棱长为1的立方块组成,则这个几何体的表面积是()A.16 B.19 C.24 D.365、如图,在平面直角坐标系xOy中,已知点A(1,0),B(3,0),C为平面内的动点,且满足∠ACB=90°,D为直线y=x上的动点,则线段CD长的最小值为()A.1 B.2 C. D.6、如图,AD为的直径,,,则AC的长度为()A. B. C.4 D.7、下面四个立体图形的展开图中,是圆锥展开图的是().······线······○······封······○······密······○······内······○······号学 级年 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······8、如图,于点,于点,于点,下列关于高的说法错误的是()A.在中,是边上的高 B.在中,是边上的高C.在中,是边上的高 D.在中,是边上的高9、东东和爸爸一起出去运动,两人同时从家出发,沿相同路线前行,途中爸爸有事返回,东东继续前行,5分钟后也原路返回,两人恰好同时到家.东东和爸爸在整个运动过程中离家的路程(米),(米)与运动时间(分)之间的函数关系如图所示,下列结论中错误的是()A.两人前行过程中的速度为180米/分 B.的值是15,的值是2700C.爸爸返回时的速度为90米/分 D.运动18分钟或31分钟时,两人相距810米10、如图所示,一座抛物线形的拱桥在正常水位时,水面AB宽为20米,拱桥的最高点O到水面AB的距离为4米.如果此时水位上升3米就达到警戒水位CD,那么CD宽为()A.4米 B.10米 C.4米 D.12米第Ⅱ卷(非选择题70分)二、填空题(5小题,每小题4分,共计20分)1、长方形纸片按图中方式折叠,其中为折痕,如果折叠后在一条直线上,那么的大小是________度.2、勾股定理有着悠久的历史,它曾引起很多人的兴趣,1955年希腊发行了以勾股定理为背景的邮票.如图,在中,,,.分别以AB,AC,BC为边向外作正方形ABMN,正方形ACKL,正方形BCDE,并按如图所示作长方形HFPQ,延长BC交PQ于G.则长方形CDPG的面积为______.3、如图,已知在Rt中,,将绕点逆时针旋转后得······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······,点落在点处,点落在点处,联结,作的平分线,交线段于点,交线段于点,那么的值为____________.······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······4、在菱形中,对角线与之比是,那么________.5、如图是两个全等的三角形,图中字母表示三角形的边长,则∠的度数为________º.三、解答题(5小题,每小题10分,共计50分)1、如图,在中,,于点,为边上一点,连接与交于点.为外一点,满足,,连接.(1)求证:;(2)求证:.2、如图,△ABC中,∠BAC=90°,点D是BC上的一点,将△ABC沿AD翻折后,点B恰好落在线段CD上的B'处,且AB'平分∠CAD.求∠BAB'的度数.3、已知:在平面直角坐标系中,点O为坐标原点,和关于y轴对称,且,(1)如图1,求的度数;(2)如图2,点P为线段延长线上一点,交x轴于点D,设,点P的横坐标为d,求d与t之间的数量关系;(3)如图3,在(2)的条件下,点E为x轴上一点,连接交y轴于点F,且,,在的延长线上取一点Q,使,求点Q的横坐标.4、请根据学习“一次函数”时积累的经验和方研究函数的图象和性质,并解决问题.······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······(1)填空:①当x=0时,;②当x>0时,;③当x<0时,;(2)在平面直角坐标系中作出函数的图象;(3)观察函数图象,写出关于这个函数的两条结论;(4)进一步探究函数图象发现:①函数图象与轴有个交点,方程有个解;②方程有个解;③若关于的方程无解,则的取值范围是.5、如图,在△ABC中,∠ABC=3∠C,AD平分∠BAC,BE⊥AD于E,求证:BE(AC﹣AB).-参考答案-一、单选题1、C【分析】根据长方体、圆柱体、球体、三棱柱的特征,找到用一个平面截一个几何体得到的形状不是长方形的几何体解答即可.【详解】解:长方体、圆柱体、三棱柱的截面都可能出现长方形,只有球体的截面只与圆有关,故选:C.【点睛】此题考查了截立体图形,正确掌握各几何体的特征是解题的关键.2、D【分析】求出选项各方程的解即可.【详解】A、,解得:,不符合题意.······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······C、,解得:,不符合题意.D、,解得:,符合题意.故选:D.【点睛】此题考查的知识点是一元一次方程的解,关键是分别求出各方程的解.3、D【分析】分别根据单独一个数也是单项式、多项式中每个单项式的最高次数是这个多项式的次数、单项式中的数字因数是这个单项式的系数、单项式中所有字母的指数和是这个单项式的次数解答即可.【详解】解:A、0是单项式,正确,不符合题意;B、多项式的次数是4,正确,不符合题意;C、的系数是,正确,不符合题意;D、的系数是-1,次数是1,错误,符合题意,故选:D.【点睛】本题考查单项式、单项式的系数和次数、多项式的次数,理解相关知识的概念是解答的关键.4、C【分析】分别求出各视图的面积,故可求出表面积.【详解】由图可得图形的正视图面积为4,左视图面积为3,俯视图的面积为5故表面积为2×(4+3+5)=24故选C.【点睛】此题主要考查三视图的求解与表面积。解题的关键是熟知三视图的性质特点.5、C【分析】取AB的中点E,过点E作直线y=x的垂线,垂足为D,求出DE长即可求出答案.【详解】解:取AB的中点E,过点E作直线y=x的垂线,垂足为D,∵点A(1,0),B(3,0),∴OA=1,OB=3,∴OE=2,∴ED=2×=,∵∠ACB=90°,∴点C在以AB为直径的圆上,∴线段CD长的最小值为−1.······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······【点睛】本题考查了垂线段最短,一次函数图象上点的坐标特征,圆周角定理等知识,确定C,D两点的位置是解题的关键.6、A【分析】连接CD,由等弧所对的圆周角相等逆推可知AC=DC,∠ACD=90°,再由勾股定理即可求出.【详解】解:连接CD∵∴AC=DC又∵AD为的直径∴∠ACD=90°∴∴∴故答案为:A.【点睛】本题考查了圆周角的性质以及勾股定理,当圆中出现同弧或等弧时,常常利用弧所对的圆周角或圆心角,通过相等的弧把角联系起来,直径所对的圆周角是90°.7、B【分析】由棱柱,圆锥,圆柱的展开图的特点,特别是底面与侧面的特点,逐一分析即可.【详解】解:选项A是四棱柱的展开图,故A不符合题意;选项B是圆锥的展开图,故B符合题意;选项C是三棱柱的展开图,故C不符合题意;选项D是圆柱的展开图,故D不符合题意;故选B【点睛】本题考查的是简单立体图形的展开图,熟悉常见的基本的立体图形及其展开图是解本题的关键.8、C【详解】解:A、在中,是边上的高,该说法正确,故本选项不符合题意;B、在中,是边上的高,该说法正确,故本选项不符合题意;C、在中,不是边上的高,该说法错误,故本选项符合题意;D、在中,是边上的高,该说法正确,故本选项不符合题意;故选:C【点睛】本题主要考查了三角形高的定义,熟练掌握在三角形中,从一个顶点向它的对边所在的直线画垂线,······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······9、D【分析】两人同行过程中的速度就是20分钟前进3600千米的速度,即可判断A;东东在爸爸返回5分钟后返回即第20分钟返回,即可得到m=15,由此即可计算出n的值和爸爸返回的速度,即可判断B、C;分别求出运动18分钟和运动31分钟两人与家的距离即可得到答案.【详解】解:∵3600÷20=180米/分,∴两人同行过程中的速度为180米/分,故A选项不符合题意;∵东东在爸爸返回5分钟后返回即第20分钟返回∴m=20-5=15,∴n=180×15=2700,故B选项不符合题意;∴爸爸返回的速度=2700÷(45-15)=90米/分,故C选项不符合题意;∵当运动18分钟时,爸爸离家的距离=2700-90×(18-15)=2430米,东东离家的距离=180×18=3240米,∴运动18分钟时两人相距3240-2430=810米;∵返程过程中东东45-20=25分钟走了3600米,∴东东返程速度=3600÷25=144米/分,∴运动31分钟时东东离家的距离=3600-144×(31-20)=2016米,爸爸离家的距离=2700-90×(31-15)=1260米,∴运动31分钟两人相距756米,故D选项符合题意;故选D.【点睛】本题主要考查了从函数图像获取信息,解题的关键在于能够准确读懂函数图像.10、B【分析】以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,设抛物线的解析式为y=ax²,由此可得A(﹣10,﹣4),B(10,﹣4),即可求函数解析式为y=﹣x²,再将y=﹣1代入解析式,求出C、D点的横坐标即可求CD的长.【详解】解:以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,设抛物线的解析式为y=ax2,∵O点到水面AB的距离为4米,∴A、B点的纵坐标为﹣4,∵水面AB宽为20米,∴A(﹣10,﹣4),B(10,﹣4),将A代入y=ax2,﹣4=100a,∴a=﹣,∴y=﹣x2,∵水位上升3米就达到警戒水位CD,∴C点的纵坐标为﹣1,∴﹣1=﹣x2,∴x=±5,∴CD=10,······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······【点睛】本题考查二次函数在实际问题中的应用,找对位置建立坐标系再求解二次函数是关键.二、填空题1、90【解析】【分析】根据折叠的性质,∠1=∠2,∠3=∠4,利用平角,计算∠2+∠3的度数即可.【详解】如图,根据折叠的性质,∠1=∠2,∠3=∠4,∵∠1+∠2+∠3+∠4=180°,∴2∠2+2∠3=180°,∴∠2+∠3=90°,∴=90°,故答案为:90.【点睛】本题考查了折叠的性质,两个角的和,熟练掌握折叠的性质,灵活运用两个角的和是解题的关键.2、12【解析】【分析】证明Rt△AIC≌Rt△CGK,得到AI=CG,利用勾股定理结合面积法求得CG=,进一步计算即可求解.【详解】解:过点A作AI⊥BC于点I,∵正方形ACKL,∴∠ACK=90°,AC=CK,∴∠ACI+∠KCG=90°,∠ACI+∠CAI=90°,∴Rt△AIC≌Rt△CGK,∴AI=CG,∵,,.∴BC=5,∵,∴AI=,则CG=,∵正方形BCDE,∴CD=BC=5,∴长方形CDPG的面积为5.故答案为:12.······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······【点睛】本题考查了全等三角形的判定和性质,勾股定理,熟记各图形的性质并准确识图是解题的关键.3、【解析】【分析】根据题意以C为原点建立平面直角坐标系,过点N作延长交BP于点P,交于点H,轴交于点G,过点D作轴交于点Q,由可设,,,由旋转可得,,,则,,写出点坐标,由角平分线的性质得,即可得出,即可得,故可推出,求出点P坐标,由得,推出,故得,由相似三角形的性质即可得解.【详解】如图,以C为原点建立平面直角坐标系,过点N作延长交BP于点P,交于点H,轴交于点G,过点D作轴交于点Q,∵,∴设,,,由旋转可得:,,,∴,,∴,,,∵AN是平分线,∴,∴,即可得,∴,设直线BE的解析式为,把,代入得:,······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······∴,当时,,解得:,∴,∴,∵,,∴,∴,∴,∴,∴.故答案为:.【点睛】本题考查旋转的性质、正切值、角平分线的性质以、用待定系数法求一次函数及相似三角形的判定与性质,根据题意建立出适当的坐标找线段长度是解题的关键.4、【解析】【分析】首先根据菱形的性质得到,然后由对角线与之比是,可求得,然后根据正弦值的概念求解即可.【详解】解:如图所示,∵在菱形中,∴∵对角线与之比是,即∴∴设,∵菱形的对角线互相垂直,即∴在中,∴······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······【点睛】此题考查了菱形的性质,勾股定理和三角函数等知识,解题的关键是熟练掌握菱形的性质,勾股定理和三角函数的概念.5、70【解析】【分析】如图(见解析),先根据三角形的内角和定理可得,再根据全等三角形的性质即可得.【详解】解:如图,由三角形的内角和定理得:,图中的两个三角形是全等三角形,在它们中,边长为和的两边的夹角分别为和,,故答案为:70.【点睛】本题考查了三角形的内角和定理、全等三角形的性质,熟练掌握全等三角形的性质是解题关键.三、解答题1、(1)见解析(2)见解析【分析】(1)如图,先证明,再根据全等三角形的判定证明结论即可;(2)根据全等三角形的性质和等腰三角形的三线合一证明,再根据全等三角形的判定与性质证明即可.(1)证明:(1)证明:∵,∴,即,在和中,∵,∴;(2)证明:∵,∴,,∵,于点,∴.∵,······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······在和中,∵,∴,∴,∴.【点睛】本题考查全等三角形的判定与性质、等腰三角形的性质,熟练掌握全等三角形的判定与性质是解答的关键.2、60°【分析】由折叠和角平分线可求∠BAD=30°,即可求出∠BAB'的度数.【详解】解:由折叠可知,∠BAD=∠B'AD,∵AB'平分∠CAD.∴∠B'AC=∠B'AD,∴∠BAD=∠B'AC=∠B'AD,∵∠BAC=90°,∴∠BAD=∠B'AC=∠B'AD=30°,∴∠BAB'=60°.【点睛】本题考查了折叠和角平分线,解题关键是掌握折叠角相等和角平分线的性质.3、(1)22.5°;(2)d=2t;(3)5【分析】(1)由轴对称,得到∠ABC=2,利用,得到∠A=3,根据∠A+=90°,求出的度数;(2)由轴对称关系求出AD=6t,根据,推出∠ADP=∠BAO,证得AP=DP,过点P作PH⊥AD于H,求出OH=AH-AO=2t,可得d与t之间的数量关系;(3)连接DQ,过P作PM⊥y轴于M,求出∠EAP=∠DPQ=,证明△EAP≌△QPD,推出∠PDQ=∠APE=,得到∠ODQ=90°,证明∠MPF=∠MFP=45°,结合,求出BF=,由,求出t=1,得到OA=1,OD=5,由此求出点Q的横坐标.(1)解:∵和关于y轴对称,∴∠ABO=∠CBO,∴∠ABC=2,∵,∴∠A=3,∵∠A+=90°,∴=22.5°;(2)解:∵和关于y轴对称,······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······∵,∴OD=5t,AD=6t,∵,∴∠ADP=∠BCO,∴∠ADP=∠BAO,∴AP=DP,过点P作PH⊥AD于H,则AH=DH=3t,∴OH=AH-AO=2t,∴d=2t;(3)解:∵=22.5°,∠ABC=2=45°,AB=BC,∴∠BAC=∠ACB=∠ADP=,∠APD=45°,∵,∴∠APE=,∠AEP=45°,∴∠EAP=∠DPQ=,∵AP=DP,AE=PQ,∴△EAP≌△QPD,∴∠PDQ=∠APE=,∴∠ODQ=90°,连接DQ,过P作PM⊥y轴于M,∵∠AEP=45°,∴∠MPF=∠MFP=45°,∴MF=MP,∵,MP=2t,∴,∵∠APE=,∠PBF=∠ABO=,∴∠PBF=∠APE,∴BF=,∵,∴,得t=1,∴OA=1,OD=5,∴点Q的横坐标为5.【点睛】此题考查了三角形内角和定理的应用,轴对称的性质,等腰三角形的性质,平行线的性质,全等三角形的判定及性质,勾股定理,求点坐标,综合掌握各知识点并熟练应用解决问题是解题的关键.······线······○······封······○······密······○······内······○······号学 级年 名姓·······线······○······封······○
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度农业科技企业劳动合同保密协议范本2篇
- 二零二五年度小微企业担保合同标准文本3篇
- 二零二五年度施工现场安全管理人员职责及考核合同3篇
- 二零二五年医疗机构病房楼场地租赁及医疗设备租赁协议3篇
- 2025年度电影发行融资居间服务协议3篇
- 二零二五年度文化遗产保护项目工程合同样本3篇
- 运动课程设计与展示
- 二零二五年度办公楼能源消耗监测与节能服务合同2篇
- 二零二五年度按揭车辆转让与汽车租赁服务结合合同2篇
- 2025年度施工安全用电安全保障措施合同范本2份3篇
- 2024年黑龙江省《辅警招聘考试必刷500题》考试题库附答案(满分必刷)
- 2025年初级会计职称《经济法基础》全真模拟及答案(解析3套)
- 2024年八年级班主任德育工作个人总结
- 《健康社区评价标准》
- 户外市场研究报告-魔镜洞察-202412
- ISO 56001-2024《创新管理体系-要求》专业解读与应用实践指导材料之2:“1至3章:范围、术语和定义”(雷泽佳编制-2025B0)
- 甘肃省会宁二中2025届高考仿真模拟数学试卷含解析
- 节约集约建设用地标准 DG-TJ08-2422-2023
- 《氮化硅陶瓷》课件
- 楼面经理述职报告
- 山东省济南市历城区2024-2025学年二年级上学期期末数学模拟检测卷(含答案)
评论
0/150
提交评论