中考强化训练湖南省湘潭市中考数学历年真题汇总 卷(Ⅲ)(含答案解析)_第1页
中考强化训练湖南省湘潭市中考数学历年真题汇总 卷(Ⅲ)(含答案解析)_第2页
中考强化训练湖南省湘潭市中考数学历年真题汇总 卷(Ⅲ)(含答案解析)_第3页
中考强化训练湖南省湘潭市中考数学历年真题汇总 卷(Ⅲ)(含答案解析)_第4页
中考强化训练湖南省湘潭市中考数学历年真题汇总 卷(Ⅲ)(含答案解析)_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题30分)一、单选题(10小题,每小题3分,共计30分)1、如图,直线AB与CD相交于点O,若,则等于()A.40° B.60° C.70° D.80°2、如图,点A,B,C在⊙O上,∠ACB=35°,则∠AOB的度数是()A.75° B.70° C.65° D.55°3、如图,已知点是一次函数上的一个点,则下列判断正确的是()A. B.y随x的增大而增大C.当时, D.关于x的方程的解是4、下列图像中表示是的函数的有几个()A.1个 B.2个 C.3个 D.4个5、为了完成下列任务,你认为最适合采用普查的是()A.了解某品牌电视的使用寿命 B.了解一批西瓜是否甜C.了解某批次烟花爆竹的燃放效果 D.了解某隔离小区居民新冠核酸检查结果6、如图,在梯形中,ADBC,过对角线交点的直线与两底分别交于点,下列结论中,错误的是()A. B. C. D.······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······A.1 B.2020 C.2021 D.20228、2021年10月16日,中国神舟十三号载人飞船的长征二号F遥十三运载火箭在中国酒泉卫星发射中心按照预定时间精准点火发射,约582秒后,神舟十三号载人飞船与火箭成功分离,进入预定轨道,截至2021年11月2日,“神舟十三号”载人飞船已在轨飞行18天,距离地球约63800000千米,用科学记数法表示63800000为()A. B. C. D.9、下面四个立体图形的展开图中,是圆锥展开图的是().A. B. C. D.10、下列函数中,随的增大而减小的是()A. B.C. D.第Ⅱ卷(非选择题70分)二、填空题(5小题,每小题4分,共计20分)1、勾股定理有着悠久的历史,它曾引起很多人的兴趣,1955年希腊发行了以勾股定理为背景的邮票.如图,在中,,,.分别以AB,AC,BC为边向外作正方形ABMN,正方形ACKL,正方形BCDE,并按如图所示作长方形HFPQ,延长BC交PQ于G.则长方形CDPG的面积为______.2、如图,在平面直角坐标系xOy中,P为函数图象上一点,过点P分别作x轴、y轴的垂线,垂足分别为M,N.若矩形PMON的面积为3,则m的值为______.3、如图,在中,,,与分别是斜边上的高和中线,那么_______度.······线······○······封······○······密······○······内······○······号学 级年 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······5、两个人玩“石头、剪刀、布”游戏,在保证游戏公平的情况下,随机出手一次,两人手势不相同的概率是___________.三、解答题(5小题,每小题10分,共计50分)1、对于平面直角坐标系中的线段,给出如下定义:线段上所有的点到轴的距离的最大值叫线段的界值,记作.如图,线段上所有的点到轴的最大距离是3,则线段的界值.(1)若A(-1,-2),B(2,0),线段的界值__________,线段关于直线对称后得到线段,线段的界值为__________;(2)若E(-1,m),F(2,m+2),线段关于直线对称后得到线段;①当时,用含的式子表示;②当时,的值为__________;③当时,直接写出的取值范围.2、如图,ABCD,,,试说明:BCDE.请补充说明过程,并在括号内填上相应的理由.解:∵ABCD(已知),,又(已知),,,,BCDE.3、如图,在等腰中,,点是边上的中点,过点作,交的延长线于点,过点作,交于点,交于点,交于点.求证:(1);(2).······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······4、数学课上,王老师准备了若干个如图1的三种纸片,A种纸片是边长为a的正方形,B种纸片是边长为······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······(1)请用两种不同的方法求图2大正方形的面积:方法1:;方法2:;(2)观察图2,请你写出代数式:(a+b)2,a2+b2,ab之间的等量关系;(3)根据(2)题中的等量关系,解决如下问题:①已知:a+b=5,(a﹣b)2=13,求ab的值;②已知(2021﹣a)2+(a﹣2020)2=5,求(2021﹣a)(a﹣2020)的值.5、已知平行四边形的顶点、分别在其的边、上,顶点、在其的对角线上.图1图2(1)如图1,求证:;(2)如图2,若,,求的值;(3)如图1,当,,求时,求的值.-参考答案-一、单选题1、A【分析】根据对顶角的性质,可得∠1的度数.【详解】解:由对顶角相等,得∠1=∠2,又∠1+∠2=80°,∴∠1=40°.故选:A.【点睛】本题考查的是对顶角,掌握对顶角相等这一性质是解决此题关键.2、B【分析】直接根据圆周角定理求解.【详解】解:,.故选:B.【点睛】······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······3、D【分析】根据已知函数图象可得,是递减函数,即可判断A、B选项,根据时的函数图象可知的值不确定,即可判断C选项,将B点坐标代入解析式,可得进而即可判断D【详解】A.该一次函数经过一、二、四象限,y随x的增大而减小,故A,B不正确;C.如图,设一次函数与轴交于点则当时,,故C不正确D.将点坐标代入解析式,得关于x的方程的解是故D选项正确故选D【点睛】本题考查了一次函数的图象与性质,一次函数与二元一次方程组的解的关系,掌握一次函数的图象与性质是解题的关键.4、A【分析】函数就是在一个变化过程中有两个变量x,y,当给定一个x的值时,y由唯一的值与之对应,则称y是x的函数,x是自变量,注意“y有唯一性”是判断函数的关键.【详解】解:根据函数的定义,每给定自变量x一个值都有唯一的函数值y与之相对应,故第2个图符合题意,其它均不符合,故选:A.【点睛】本题考查函数图象的识别,判断方法:做垂直x轴的直线在左右平移的过程中,与函数图象只会有一个交点.5、D【分析】普查和抽样调查的选择,需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【详解】解:A、了解某品牌电视的使用寿命,调查带有破坏性,应用抽样调查方式,故此选项不合题意;B、了解一批西瓜是否甜,调查带有破坏性,应用抽样调查方式,故此选项不合题意;C、了解某批次烟花爆竹的燃放效果,调查带有破坏性,适合选择抽样调查,故此选项不符合题意;D、了解某隔离小区居民新冠核酸检查结果,对结果的要求高,结果必须准确,应用全面调查方式,故此选项符合题意.故选:D.······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······本题考查了抽样调查和全面调查,由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.6、B【分析】根据ADBC,可得△AOE∽△COF,△AOD∽△COB,△DOE∽△BOF,再利用相似三角形的性质逐项判断即可求解.【详解】解:∵ADBC,∴△AOE∽△COF,△AOD∽△COB,△DOE∽△BOF,∴,故A正确,不符合题意;∵ADBC,∴△DOE∽△BOF,∴,∴,∴,故B错误,符合题意;∵ADBC,∴△AOD∽△COB,∴,∴,故C正确,不符合题意;∴,∴,故D正确,不符合题意;故选:B【点睛】本题主要考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质定理是解题的关键.7、D【分析】根据题意可得每“生长”一次,面积和增加1,据此即可求得“生长”了2021次后形成的图形中所有的正方形的面积和.【详解】解:如图,由题意得:SA=1,由勾股定理得:SB+SC=1,则“生长”了1次后形成的图形中所有的正方形的面积和为2,同理可得:“生长”了2次后形成的图形中所有的正方形面积和为3,······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······……“生长”了2021次后形成的图形中所有的正方形的面积和是2022,故选:D【点睛】本题考查了勾股数规律问题,找到规律是解题的关键.8、B【分析】科学记数法的表示形式为的形式,其中,n为整数;确定n的值时,要把原数变成a,小数点移动了多少位,n的绝对值与小数点移动的位数相同;当原数的绝对值大于10时,n为正整数,当原数的绝对值小于1时,n为负整数.【详解】故选:B【点睛】本题考查了科学记数法的表示方法;科学记数法的表示形式为的形式,其中,n为整数,熟练地掌握科学记数法的表示方法是解本题的关键.9、B【分析】由棱柱,圆锥,圆柱的展开图的特点,特别是底面与侧面的特点,逐一分析即可.【详解】解:选项A是四棱柱的展开图,故A不符合题意;选项B是圆锥的展开图,故B符合题意;选项C是三棱柱的展开图,故C不符合题意;选项D是圆柱的展开图,故D不符合题意;故选B【点睛】本题考查的是简单立体图形的展开图,熟悉常见的基本的立体图形及其展开图是解本题的关键.10、C【分析】根据各个选项中的函数解析式,可以判断出y随x的增大如何变化,从而可以解答本题.【详解】解:A.在中,y随x的增大而增大,故选项A不符合题意;B.在中,y随x的增大与增大,不合题意;C.在中,当x>0时,y随x的增大而减小,符合题意;D.在,x>2时,y随x的增大而增大,故选项D不符合题意;故选:C.【点睛】本题考查了正比例函数的性质、二次函数的性质、反比例函数的性质,正确掌握相关函数增减性是解题关键.二、填空题1、12【解析】【分析】······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······证明Rt△······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······【详解】解:过点A作AI⊥BC于点I,∵正方形ACKL,∴∠ACK=90°,AC=CK,∴∠ACI+∠KCG=90°,∠ACI+∠CAI=90°,∴Rt△AIC≌Rt△CGK,∴AI=CG,∵,,.∴BC=5,∵,∴AI=,则CG=,∵正方形BCDE,∴CD=BC=5,∴长方形CDPG的面积为5.故答案为:12..【点睛】本题考查了全等三角形的判定和性质,勾股定理,熟记各图形的性质并准确识图是解题的关键.2、3【解析】【分析】根据反比例函数的解析式是,设点,根据已知得出,即,求出即可.【详解】解:设反比例函数的解析式是,设点是反比例函数图象上一点,矩形的面积为3,,即,故答案为:3.【点睛】······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······3、50【解析】【分析】根据直角三角形中线的性质及互为余角的性质计算.【详解】解:,为边上的高,,,是斜边上的中线,,,的度数为.故答案为:50.【点睛】本题主要考查了直角三角形中线的性质及互为余角的性质,解题的关键是掌握三角形中线的性质.4、【解析】【分析】如图,过点B向AO作垂线交点为C,勾股定理求出,的值,求出的长,求出值即可.【详解】解:如图,过点B向AO作垂线交点为C,O到AB的距离为h∵,,,∴故答案为:.【点睛】本题考查了锐角三角函数值,勾股定理.解题的关键是表示出所需线段长.5、【解析】【分析】画出树状图分析,找出可能出现的情况,再计算即可.【详解】解:画树形图如下:······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······从树形图可以看出,所有可能出现的结果共有9种,两人手势不相同有6种,所以两人手势不相同的概率=,故答案为:.【点睛】本题涉及列表法和树状图法以及相关概率知识,用到的知识点为:概率=所求情况数与总情况数之比.三、解答题1、(1)2,6(2)①=4-m;1,5;,【分析】(1)由对称的性质求得C、D点的坐标即可知.(2)由对称的性质求得G点坐标为(-1,4-m),H点坐标为(2,2-m)①因为,故4-m>2-m>0,则=4-m②需分类讨论和的值大小,且需要将所求m值进行验证.③需分类讨论,当,则且,当,则且,再取公共部分即可.(1)线段上所有的点到轴的最大距离是2,则线段的界值线段AB关于直线对称后得到线段,C点坐标为(-1,6),D点坐标为(2,4),线段CD上所有的点到轴的最大距离是6,则线段的界值(2)设G点纵坐标为a,H点纵坐标为b由题意有,解得a=4-m,b=2-m故G点坐标为(-1,4-m),H点坐标为(2,2-m)①当,4-m>2-m>0故=4-m②若,则即m=1或m=7当m=1时,,,符合题意当m=7时,,,,不符合题意,故舍去.若,则即m=-1或m=5当m=-1时,,,,不符合题意,故舍去当m=5时,,,符合题意.则时,的值为1或5.③当,则且······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······解得,,解得故,解得故当,则且故有,解得,,解得故,解得故综上所述,当时,的取值范围为和.【点睛】本题考查了坐标轴中对称变化和含绝对值的不等式,本题不但要分类讨论4-m和2-m的大小关系,还有去绝对值的情况是解题的关键.的解集为,的解集为,.2、两直线平行,内错角相等;55;等量代换;已知;;同旁内角互补,两直线平行【分析】由题意根据平行线的性质与判定即可补充说理过程.【详解】解:(已知),(两直线平行,内错角相等),又(已知),(等量代换),(已知),,(同旁内角互补,两直线平行).故答案为:两直线平行,内错角相等;55;等量代换;已知;;同旁内角互补,两直线平行.【点睛】本题考查平行线的判定与性质,解决本题的关键是掌握平行线的判定与性质.3、(1)见解析(2)见解析【分析】(1)利用已知条件证明即可;(2)通过证明得出,再根据,得出结论.······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······证明:,,,,,,,;(2)证明,点是边上的中点,,,,,,,,,,,,,即.【点睛】本题考查了三角形相似的判定和性质以及直角三角形和等腰三角形的性质,解题的关键是掌握相似三角形的判定定理进行证明.4、(1);(2)(3)①;②-2【分析】(1)方法1,由大正方形的边长为(a+b),直接求面积;方法2,大正方形是由2个长方形,2个小正方形拼成,分别求出各个小长方形、正方形的面积再求和即可;(2)由(1)直接可得关系式;(3)①由(a-b)2=a2+b2-2ab=13,(a+b)2=a2+b2+2ab=25,两式子直接作差即可求解;②设2021-a=x,a-2020=y,可得x+y=1,再由已知可得x2+y2=5,先求出xy=-2,再求(2021-a)(a-2020)=-2即可.(1)方法一:∵大正方形的边长为(a+b),∴S=(a+b)2;方法二:大正方形是由2个长方形,2个小正方形拼成,∴S=b2+ab+ab+a2=a2+b2+2ab;故答案为:(a+b)2,a2+b2+2ab;(2)由(1)可得(a+b)2=a2+b2+2ab;······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······故答案为:(······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······(3)①∵(a-b)2=a2+b2-2ab=13①,(a+b)2=a2+b2+2ab=25②,由①-②得,-4ab=-12,解得:ab=3;②设2021-a=x,a-2020=y,∴x+y=1,∵(2021-a)2+(a-2020)2=5,∴x2+y2=5,∵(x+y)2=x2+2xy+y2=1,∴2xy=1-(x2+y2)=1-5=-4,解得:xy=-2,∴(2021-a)(a-2020)=-2.【点睛】本题考查完全平方公式的几何背景,熟练掌握正方形、长方形面积的求法,灵活应用完全平方公式的变形是解题的关键.5、(1)证明见解析(2)(3)【分析】(1)根据四边形,四边形都是平行四边形,得到和,然后证明,即可证明出;(2)作于M点,设,首先根据,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论