




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
July2022
TITLE
doc.:IEEE802.11-22/0987r
21
Submission page
PAGE
3
XiaofeiWang(InterDigitalInc.)
IEEEP802.11
WirelessLANs
IEEE802.11AIMLTIGTechnicalReportDraft
Date:2022-07-06
Author(s):
Name
Affiliation
Address
Phone
XiaofeiWang
InterDigitalInc.
111West33rdStreet
NewYork,NY10120
USA
+1-607-592-2727
Xiaofei.wang@
MingGan
Huawei
Ming.gan@
ZinanLin
InterDigital
RuiYang
InterDigital
AiguoYan
Zeku
JunghoonSuh
Huawei
ZiyangGuo
Huawei
MarcoHernadez
NICT
LiangxiaoXin
Zeku
Abstract
ThisdocumentcontainsthetechnicalreportoftheIEEE802.11AIMLTIG.
R0:initialoutline
R1:insertionofUsecase1
R2:insertionofIntroduction
TableofContents
Introduction
Terminologies
AIML ArtificialIntelligence/MachineLearning
CSI ChannelStateInformation
UHR UltraHighReliability
Backgroundinformation
ArtificialIntelligence/MachineLearning(AI/ML)algorithmshavemadesignificantprogressandarebeingappliedinmanydomains,includingmedicaldiagnosis,speechrecognition,computervision,andintegrationofvisionandcontrolforrobotics.Inaddition,AI/MLalgorithmsareemergingasimportantcomponentsinmanyapplicationssuchasautonomousdriving,languagetranslationandhuman-machineinteractions.
TraditionalAI/MLtechniquesarebasedonacentralizedmodelwhichrequiresexchangingalargeamountofdatabetweendatasourcesandacentralizedserver.Morerecently,distributedAI/MLalgorithmssuchasfederatedlearninghavebeendevelopedthatwillallowmoreanalysisatthesourceandreducetheamountofdatathatneedtobeexchanged,thoughtheexpectedamountofexchangeddataremainssignificant.Withtheprevalenceofwirelessnetworksandcommunications,muchoftheexchangeddataisexpectedtobecarriedthroughwirelessnetworks,suchasIEEE802.11WLANnetworks.
StudieshaveshownthatAI/MLalgorithmscanhelpimprovetheperformanceforwirelesscommunicationnetworks,byprovidingbetterresourceusage,lowerenergyconsumption,higherreliabilityandmorerobustnesstoachangingenvironment.Asthesealgorithmsbecomemorematureandcosteffective,WLANmayleverageAI/MLforenhancednetworkperformanceanduserexperience.
InMay2022,theIEEE802.11WorkingGroup(WG)hasapprovedtheformingoftheAIMLTaskInterestGroup(TIG)bythefollowingmotion[1]:
Motion5:TIGRe:AI/MLusein802.11
ApproveformationofaTopicInterestGroup(TIG)to:
(a)describeusecasesforArtificialIntelligence/MachineLearning(AI/ML)applicabilityin802.11systemsand
(b)investigatethetechnicalfeasibilityoffeaturesenablingsupportofAI/ML.
TheTIGistocompleteareportonthistopicatorbeforetheMarch2023session.
ThistechnicalreportisthefinalreportoftheAIMLTIGtotheIEEE802.11WGdetailingvariousAIMLusecasesdiscussedduringtheAIMLTIG.Foreachusecase,anumberofKeyPerformanceIndicators(KPIs)havebeenidentifiedandrequirementsandtechnicalfeasibilityanalysishavebeenprovided.
AIMLUsecasesforIEEE802.11
Note:usecasespotentiallycanbeorganizedintodifferentcategories
Note:usecasespotentiallycanidentifyKPIs
Usecase1:CSIfeedbackcompression
In802.11ax[1]andthedraftof802.11be[2],theAPinitiatesthesoundingsequencebytransmittingtheNDPAframefollowedbyaNDPwhichisusedforthegenerationofVmatrixatthebeamformee.UponthereceiptoftheNDPfromthebeamformer,thebeamforeeappliesacompressionscheme(i.e.,Givensrotations)ontheVmatrixandfeedsbacktheangelesinthebeamformingreportframe.
Itisindicatedin
REF_Ref118889474\r\h
[4][3]
thathighernumberofspatialstreamshasbeenaninevitabletrendinWiFiformorethanadecade.Theprelimilaryresults
REF_Ref118889474\r\h
[4][3]
REF_Ref118889476\r\h
[5][4]
REF_Ref118889495\r\h
[6][5]
showthatMIMOwithalargenumbertransmitterantennasandalargenumberofspatialstreams(e.g.,16spatialstreams)offerremarkablesystemperformancegainsonbothSU-MIMOandMU-MIMOcases.MultiAP(MAP)maybeonepotentialfeatureinthenext802.11generation,e.g.UHR
REF_Ref118797206\r\h
[7][6]
-
REF_Ref118796138\r\h
[10][9]
.LargenumberofspatialstreamscombinedwithMAPfeaturemayfurtherincreasethesoundingfeedbackairtimeoverheadifcoordinationbetweenAPs(e.g.,jointtransmission/reception,coordinatedbeamforming)isapplied.Largeamountofoverheadorprolongedsoundingproceduresmaynegativelyimpactthelatencyandlimitthesystemperformance.Therefore,thereisaneedtoreducetheCSIoverheadespeciallywhenthenumberoftransmitterantennasgoeshigherormultipleAPsperformjointorcoordinatedtransmission.
Somestudies(e.g.,
REF_Ref118797710\r\h
[11][10]
REF_Ref118797712\r\h
[12][11]
REF_Ref118983623\r\h
[13][12]
REF_Ref118988666\r\h
[14][13]
)haveshownthatAI/MLcanefficientlyreducetheCSIfeedbackandimprovethesystemthroughput.Forexample,motivatedbythenaturethattheCSImayfallintodifferentclustersduetothechannelsimilarityofnearbySTAs,iFORalgorithm
REF_Ref118797710\r\h
[11][10]
appliestheunsupervisedlearning,K-mean,totheCSIcompressiontoclassifytheanglevectorswhicharederivedfromVmatrix.Simulationresultsshowthatfora8x2SU-MIMO,iFORusesaround8%ofthenumberofbitsrequiredbytheexistingfeedbackmechanism(802.11ax)andboostthesystemthroughputbyupto52%.In
REF_Ref118797712\r\h
[12][11]
,anotherunsupervisedlearning,DeepNeuralNetworkAutoencoder(DNN-AE)isappliedtoCSIanglevectorsandfurthercompressesthederivedangles(LB-SciFi)byleveraingthecompressioncapabilityofDNNs.ExperimentalresultsshowthatLB-SciFireducesthefeedbackoverheadby73%andincreasesthenetworkthroughputby69%onaverage.
ThisusecaseproposestoapplyAI/MLtechniquetoCSIfeedbackschemestoreducetheCSIoverheadwithminimumlossofPERperformance.
KPIsconsideredinthisusecaseareproposedasfollows:
Numberoffeedbackbitspersubcarriergroup
AchievedPER
BothSU-MIMOandMU-MIMOcasesneedtobeconsidered
AdditionalAIMLoverheadcompredwithcompressionsaving
OneexampleistheratiobetweenthenumberofadditionalbitsrequiredbyAIMLprocess(includingdatausedformodeltraining/inference
REF_Ref119303357\r\h
[15][14]
themodelparameters,theadditionalsignaling)andthenumberofbitssavedbytheCSIfeedbackscheme.Inthisexample,ifthedatausedformodeltrainingthatisperformedbytheAPfullyreliesonthelegacyCSIreport,thentheadditionalAIMLusedformodeltraining/inferencemaybe0.
Computationcomplexity/Latency:
AdditionaldelayorcomputationisintroducedbyAIMLprocessing
Eveluationmethodologyneedstobeestablished.
Usecase2
UsecaseN
RequirementsandPotentialfeaturesanalysis(highlevel)
Requirements
RequirementsUsecase1:CSIfeedbackcompression
Performanceshouldfollowtheguidiancebelow:
CSIairtimereduction:achievearitimereductionofCSIfeedbackover802.11beforagivenNrxNcMIMO,whereNristhenumberofrowsinthecompressedbeamformingfeeedbackmatrix,Ncisthenumberofcolumnsinthecompressedbeamformingfeedbackmatrix.
AdditionaloverheadusedforAIMLprocess:minimizetheadditionaloverheadusedforAIMLprocess.AdditionaloverheadmayincludethedatausedforAIMLmodeltraining/inference[14],themodelparametersandadditionalsignalling.ThedatausedforAIMLmodeltraining/inference[14]canreusethelegecyCSIreportdata.
PacketErrorrate(PER):guaranteeminimumSNRlosscomparedwith802.11betoachievethetargetPER(e.g.,1%and/or10%)atagivenMCSinalltypesofchannels
REF_Ref119303329\r\h
[16][15]
.
Computationcomplexity/Latency:minimizetheadditionalcomputationcomplexityorlatencyrequiredbytheAIMLprocess
Potentialfeaturesanalysis
Technicalfeasibilityanalysis
Standardsimpact
UsecaseofCSIfeedbackcompression
Thestandardimpactmayinclude:
Additionalsignaling(e.g.,betweenAPandnon-APSTAs)requiredbyAIMLprocessPlaceholderforadditionaltechnicalfeasibilityanalysis
Technicalfeasibility
UsecaseofCSIfeedbackcompression
Thefollowingmetricswillbestudied:
Dataavailabilityandaccesibility:TherearesomeSTAsthatareabletousethedatatoperformAIMLmodeltrainingand/orinference
REF_Ref119086275\r\h
[15][14]
.Thedatausedformodeltrainingand/orinferenceshallbeaccessiblefortheseSTAs.
AP/edgecomputingbasedAIML:Datamaybecollectedfromnon-APSTAs.Thelegeacy802.11CSIreportsmaybeusedastrainingdata.
DevicecomputingbasedAIML:DatashouldbeavailableatallSTAsthatsupportAIMLprocess.
Hardware/softwarecapability:TheSTAsthatuseAIMLtogeneratetheAIMLenabledCSIfeedbackcompressionshallhavethehardwareandsoftwarecapabilitytosupportAIMLalgorithm(s).
AP/edgecomputingbasedAIML
REF_Ref119085527\r\h
[17][16]
:Extradataandmodel(e.g.,modelparameters)exchangemayberequiredtosupportAP/edgecomputingbasedAIML.However,computationisnotexpectedtobelocatedatAPoredgecomputingresourcesforwhichhighercomputationcapabilitiesisexpected.
DevicecomputingbasedAIML
REF_Ref119085527\r\h
[17][16]
:STAsthatsupportAIMLmayberequiredtohaveextracomputationcapability.Extradataandmodel(e.g.,modelparameters)exchangebetweenSTAsmayalsoberequiredtosupportdevicecomputingbasedAIML.
Summary
References
11-22/597r3:May2022WorkingGroupMotions,May18,2022
IEEE802.11-REVmeD2.0,October2022
IEEEP802.11beD2.2,October2022
802.11-18/0818r3,16SpatialStreamSupportinNextGenerationWLAN
802.11-20/1877r1,16SpatialStreamSupport
802.11-20/1535r66,CompendiumofstrawpollsandpotentialchangestotheSpecificationFrameworkDocumentPart2
802.11-22/1515,Acandidatefeature:M
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024湖南潇湘科技技工学校工作人员招聘考试及答案
- 2024湖南建筑高级技工学校工作人员招聘考试及答案
- 星级家政服务人员雇佣合同
- 建筑设备租赁合同范本指南
- 股权转让合同保证金协议
- 企业合同管理效率提升与创新路径
- 网络打假安全课件
- 植物模拟习题(含答案)
- 核心条款集装箱货物运输合作协议
- 工程行业企业文化
- 2024年人教精通版四年级下册英语期末专项复习-阅读理解
- 中医推拿基础培训课件
- 防电信诈骗安全教案
- 产品履历表完
- 保健食品备案产品可用辅料及其使用规定
- 肺癌伴胸腔积液护理查房
- 健康管理中的健康教育与健康促进研究
- 2024年中考化学复习把握中考方向共研备考策略
- 新闻宣传“三审三校”审查表
- 电缆井施工方案
- 四川外国语大学《245法语》历年考研真题及详解
评论
0/150
提交评论