江苏省苏州市昆山市达标名校2024届中考冲刺卷数学试题含解析_第1页
江苏省苏州市昆山市达标名校2024届中考冲刺卷数学试题含解析_第2页
江苏省苏州市昆山市达标名校2024届中考冲刺卷数学试题含解析_第3页
江苏省苏州市昆山市达标名校2024届中考冲刺卷数学试题含解析_第4页
江苏省苏州市昆山市达标名校2024届中考冲刺卷数学试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省苏州市昆山市达标名校2024届中考冲刺卷数学试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1.下列事件中,属于必然事件的是()A.三角形的外心到三边的距离相等B.某射击运动员射击一次,命中靶心C.任意画一个三角形,其内角和是180°D.抛一枚硬币,落地后正面朝上2.已知x=1是方程x2+mx+n=0的一个根,则代数式m2+2mn+n2的值为()A.–1B.2C.1D.–23.如图,甲、乙、丙图形都是由大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置小正方体的个数.其中主视图相同的是()A.仅有甲和乙相同 B.仅有甲和丙相同C.仅有乙和丙相同 D.甲、乙、丙都相同4.中国幅员辽阔,陆地面积约为960万平方公里,“960万”用科学记数法表示为()A.0.96×107 B.9.6×106 C.96×105 D.9.6×1025.已知,代数式的值为()A.-11 B.-1 C.1 D.116.如图是一个由5个相同的正方体组成的立体图形,它的主视图是()A. B. C. D.7.河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1:,则AB的长为A.12米 B.4米 C.5米 D.6米8.在平面直角坐标系中,将点P(﹣2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P′的坐标是()A.(2,4) B.(1,5) C.(1,-3) D.(-5,5)9.如图,在矩形AOBC中,O为坐标原点,OA、OB分别在x轴、y轴上,点B的坐标为(0,3),∠ABO=30°,将△ABC沿AB所在直线对折后,点C落在点D处,则点D的坐标为()A.(,) B.(2,) C.(,) D.(,3﹣)10.如图,△ABC中,AD⊥BC,AB=AC,∠BAD=30°,且AD=AE,则∠EDC等于()A.10° B.12.5° C.15° D.20°二、填空题(本大题共6个小题,每小题3分,共18分)11.小华到商场购买贺卡,他身上带的钱恰好能买5张3D立体贺卡或20张普通贺卡若小华先买了3张3D立体贺卡,则剩下的钱恰好还能买______张普通贺卡.12.如图,为了测量铁塔AB高度,在离铁塔底部(点B)60米的C处,测得塔顶A的仰角为30°,那么铁塔的高度AB=________米.13.如图,折叠长方形纸片ABCD,先折出对角线BD,再将AD折叠到BD上,得到折痕DE,点A的对应点是点F,若AB=8,BC=6,则AE的长为_____.14.如图,AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,得到下面四个结论:①OA=OD;②AD⊥EF;③当∠BAC=90°时,四边形AEDF是正方形;④AE2+DF2=AF2+DE2.其中正确的是_________.(填序号)15.如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=10,AC=6,则DF的长为__.16.若关于的一元二次方程有实数根,则的取值范围是________.三、解答题(共8题,共72分)17.(8分)如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF,(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.18.(8分)一定数量的石子可以摆成如图所示的三角形和四边形,古希腊科学家把1,3,6,10,15,21,…,称为“三角形数”;把1,4,9,16,25,…,称为“正方形数”.将三角形、正方形、五边形都整齐的由左到右填在所示表格里:三角形数136101521a…正方形数1491625b49…五边形数151222C5170…(1)按照规律,表格中a=___,b=___,c=___.(2)观察表中规律,第n个“正方形数”是________;若第n个“三角形数”是x,则用含x、n的代数式表示第n个“五边形数”是___________.19.(8分)某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.该商场两次共购进这种运动服多少套?如果这两批运动服每套的售价相同,且全部售完后总利润不低于20%,那么每套售价至少是多少元?20.(8分)如图,在梯形ABCD中,AD∥BC,对角线AC、BD交于点M,点E在边BC上,且∠DAE=∠DCB,联结AE,AE与BD交于点F.(1)求证:;(2)连接DE,如果BF=3FM,求证:四边形ABED是平行四边形.21.(8分)如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC,CF平分∠DCE.求证:CF⊥DE于点F.22.(10分)如图,正方形OABC的面积为9,点O为坐标原点,点A在x轴上,点C上y轴上,点B在反比例函数y=(k>0,x>0)的图象上,点E从原点O出发,以每秒1个单位长度的速度向x轴正方向运动,过点E作x的垂线,交反比例函数y=(k>0,x>0)的图象于点P,过点P作PF⊥y轴于点F;记矩形OEPF和正方形OABC不重合部分的面积为S,点E的运动时间为t秒.(1)求该反比例函数的解析式.(2)求S与t的函数关系式;并求当S=时,对应的t值.(3)在点E的运动过程中,是否存在一个t值,使△FBO为等腰三角形?若有,有几个,写出t值.23.(12分)如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?24.如图所示,PB是⊙O的切线,B为切点,圆心O在PC上,∠P=30°,D为弧BC的中点.(1)求证:PB=BC;(2)试判断四边形BOCD的形状,并说明理由.

参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】分析:必然事件就是一定发生的事件,依据定义即可作出判断.详解:A、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三边的距离相等,是不可能事件,故本选项不符合题意;B、某射击运动员射击一次,命中靶心是随机事件,故本选项不符合题意;C、三角形的内角和是180°,是必然事件,故本选项符合题意;D、抛一枚硬币,落地后正面朝上,是随机事件,故本选项不符合题意;故选C.点睛:解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2、C【解析】

把x=1代入x2+mx+n=0,可得m+n=-1,然后根据完全平方公式把m2+2mn+n2变形后代入计算即可.【详解】把x=1代入x2+mx+n=0,代入1+m+n=0,∴m+n=-1,∴m2+2mn+n2=(m+n)2=1.故选C.【点睛】本题考查了方程的根和整体代入法求代数式的值,能使方程两边相等的未知数的值叫做方程的根.3、B【解析】试题分析:根据分析可知,甲的主视图有2列,每列小正方数形数目分别为2,2;乙的主视图有2列,每列小正方数形数目分别为2,1;丙的主视图有2列,每列小正方数形数目分别为2,2;则主视图相同的是甲和丙.考点:由三视图判断几何体;简单组合体的三视图.4、B【解析】试题分析:“960万”用科学记数法表示为9.6×106,故选B.考点:科学记数法—表示较大的数.5、D【解析】

根据整式的运算法则,先利用已知求出a的值,再将a的值带入所要求解的代数式中即可得到此题答案.【详解】解:由题意可知:,原式故选:D.【点睛】此题考查整式的混合运算,解题的关键在于利用整式的运算法则进行化简求得代数式的值6、A【解析】

根据从正面看得到的图形是主视图,可得答案.【详解】解:从正面看第一层是三个小正方形,第二层中间有一个小正方形,

故选:A.【点睛】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.7、A【解析】

试题分析:在Rt△ABC中,BC=6米,,∴AC=BC×=6(米).∴(米).故选A.【详解】请在此输入详解!8、B【解析】试题分析:由平移规律可得将点P(﹣2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P′的坐标是(1,5),故选B.考点:点的平移.9、A【解析】解:∵四边形AOBC是矩形,∠ABO=10°,点B的坐标为(0,),∴AC=OB=,∠CAB=10°,∴BC=AC•tan10°=×=1.∵将△ABC沿AB所在直线对折后,点C落在点D处,∴∠BAD=10°,AD=.过点D作DM⊥x轴于点M,∵∠CAB=∠BAD=10°,∴∠DAM=10°,∴DM=AD=,∴AM=×cos10°=,∴MO=﹣1=,∴点D的坐标为(,).故选A.10、C【解析】试题分析:根据三角形的三线合一可求得∠DAC及∠ADE的度数,根据∠EDC=90°-∠ADE即可得到答案.∵△ABC中,AD⊥BC,AB=AC,∠BAD=30°,∴∠DAC=∠BAD=30°,∵AD=AE(已知),∴∠ADE=75°∴∠EDC=90°-∠ADE=15°.故选C.考点:本题主要考查了等腰三角形的性质,三角形内角和定理点评:解答本题的关键是掌握等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.二、填空题(本大题共6个小题,每小题3分,共18分)11、1【解析】

根据已知他身上带的钱恰好能买5张3D立体贺卡或20张普通贺卡得:1张3D立体贺卡的单价是1张普通贺卡单价的4倍,所以设1张3D立体贺卡x元,剩下的钱恰好还能买y张普通贺卡,根据3张3D立体贺卡张普通贺卡张3D立体贺卡,可得结论.【详解】解:设1张3D立体贺卡x元,剩下的钱恰好还能买y张普通贺卡.

则1张普通贺卡为:元,

由题意得:,

答:剩下的钱恰好还能买1张普通贺卡.

故答案为:1.【点睛】本题考查了一元一次方程的应用以及列代数式,解题的关键是:根据总价单价数量列式计算.12、20【解析】

在Rt△ABC中,直接利用tan∠ACB=tan30°==即可.【详解】在Rt△ABC中,tan∠ACB=tan30°==,BC=60,解得AB=20.故答案为20.【点睛】本题考查的知识点是解三角形的实际应用,解题的关键是熟练的掌握解三角形的实际应用.13、3【解析】

先利用勾股定理求出BD,再求出DF、BF,设AE=EF=x.在Rt△BEF中,由EB2=EF2+BF2,列出方程即可解决问题.【详解】∵四边形ABCD是矩形,∴∠A=90°.∵AB=8,AD=6,∴BD1.∵△DEF是由△DEA翻折得到,∴DF=AD=6,BF=2.设AE=EF=x.在Rt△BEF中,∵EB2=EF2+BF2,∴(8﹣x)2=x2+22,解得:x=3,∴AE=3.故答案为:3.【点睛】本题考查了矩形的性质、勾股定理等知识,解题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.14、②③④【解析】试题解析:根据已知条件不能推出OA=OD,∴①错误;∵AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,∴DE=DF,∠AED=∠AFD=90°,在Rt△AED和Rt△AFD中,,∴Rt△AED≌Rt△AFD(HL),∴AE=AF,∵AD平分∠BAC,∴AD⊥EF,∴②正确;∵∠BAC=90°,∠AED=∠AFD=90°,∴四边形AEDF是矩形,∵AE=AF,∴四边形AEDF是正方形,∴③正确;∵AE=AF,DE=DF,∴AE2+DF2=AF2+DE2,∴④正确;∴②③④正确,15、1【解析】

试题分析:如图,延长CF交AB于点G,∵在△AFG和△AFC中,∠GAF=∠CAF,AF=AF,∠AFG=∠AFC,∴△AFG≌△AFC(ASA).∴AC=AG,GF=CF.又∵点D是BC中点,∴DF是△CBG的中位线.∴DF=BG=(AB﹣AG)=(AB﹣AC)=1.16、【解析】

由题意可得,△=9-4m≥0,由此求得m的范围.【详解】∵关于x的一元二次方程x2-3x+m=0有实数根,∴△=9-4m≥0,求得m≤.故答案为:【点睛】本题考核知识点:一元二次方程根判别式.解题关键点:理解一元二次方程根判别式的意义.三、解答题(共8题,共72分)17、(1)见解析(2)见解析【解析】

(1)根据AAS证△AFE≌△DBE,推出AF=BD,即可得出答案.(2)得出四边形ADCF是平行四边形,根据直角三角形斜边上中线性质得出CD=AD,根据菱形的判定推出即可.【详解】解:(1)证明:∵AF∥BC,∴∠AFE=∠DBE.∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD.在△AFE和△DBE中,∵∠AFE=∠DBE,∠FEA=∠BED,AE=DE,∴△AFE≌△DBE(AAS)∴AF=BD.∴AF=DC.(2)四边形ADCF是菱形,证明如下:∵AF∥BC,AF=DC,∴四边形ADCF是平行四边形.∵AC⊥AB,AD是斜边BC的中线,∴AD=DC.∴平行四边形ADCF是菱形18、123n2n2+x-n【解析】分析:(1)、首先根据题意得出前6个“三角形数”分别是多少,从而得出a的值;前5个“正方形数”分别是多少,从而得出b的值;前4个“正方形数”分别是多少,从而得出c的值;(2)、根据前面得出的一般性得出答案.详解:(1)∵前6个“三角形数”分别是:1=、3=、6=、10=、15=、21=,

∴第n个“三角形数”是,∴a=7×82=17×82=1.

∵前5个“正方形数”分别是:1=12,4=22,9=32,16=42,25=52,

∴第n个“正方形数”是n2,∴b=62=2.

∵前4个“正方形数”分别是:1=,5=,12=,22=,

∴第n个“五边形数”是n(3n−1)2n(3n−1)2,∴c==3.

(2)第n个“正方形数”是n2;1+1-1=1,3+4-5=2,6+9-12=3,10+16-22=4,…,

∴第n个“五边形数”是n2+x-n.点睛:此题主要考查了图形的变化类问题,要熟练掌握,解答此类问题的关键是首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.19、(1)商场两次共购进这种运动服600套;(2)每套运动服的售价至少是200元.【解析】

(1)设商场第一次购进套运动服,根据“第二批所购数量是第一批购进数量的2倍,但每套进价多了10元”即可列方程求解;(2)设每套运动服的售价为y元,根据“这两批运动服每套的售价相同,且全部售完后总利润率不低于20%”即可列不等式求解.【详解】(1)设商场第一次购进x套运动服,由题意得解这个方程,得经检验,是所列方程的根.答:商场两次共购进这种运动服600套;(2)设每套运动服的售价为y元,由题意得,解这个不等式,得答:每套运动服的售价至少是200元.【点睛】此题主要考查分式方程的应用,一元一次不等式的应用,解题的关键是读懂题意,找到等量及不等关系,正确列方程和不等式求解.20、(1)证明见解析;(2)证明见解析.【解析】分析:(1)由AD∥BC可得出∠DAE=∠AEB,结合∠DCB=∠DAE可得出∠DCB=∠AEB,进而可得出AE∥DC、△AMF∽△CMD,根据相似三角形的性质可得出=,根据AD∥BC,可得出△AMD∽△CMB,根据相似三角形的性质可得出=,进而可得出=,即MD2=MF•MB;(2)设FM=a,则BF=3a,BM=4a.由(1)的结论可求出MD的长度,代入DF=DM+MF可得出DF的长度,由AD∥BC,可得出△AFD∽△△EFB,根据相似三角形的性质可得出AF=EF,利用“对角线互相平分的四边形是平行四边形”即可证出四边形ABED是平行四边形.详解:(1)∵AD∥BC,∴∠DAE=∠AEB.∵∠DCB=∠DAE,∴∠DCB=∠AEB,∴AE∥DC,∴△AMF∽△CMD,∴=.∵AD∥BC,∴△AMD∽△CMB,∴==,即MD2=MF•MB.(2)设FM=a,则BF=3a,BM=4a.由MD2=MF•MB,得:MD2=a•4a,∴MD=2a,∴DF=BF=3a.∵AD∥BC,∴△AFD∽△△EFB,∴==1,∴AF=EF,∴四边形ABED是平行四边形.点睛:本题考查了相似三角形的判定与性质、平行四边形的判定、平行线的性质以及矩形,解题的关键是:(1)利用相似三角形的性质找出=、=;(2)牢记“对角线互相平分的四边形是平行四边形”.21、证明见解析.【解析】

根据平行线性质得出∠A=∠B,根据SAS证△ACD≌△BEC,推出DC=CE,根据等腰三角形的三线合一定理推出即可.【详解】∵AD∥BE,∴∠A=∠B.在△ACD和△BEC中∵,∴△ACD≌△BEC(SAS),∴DC=CE.∵CF平分∠DCE,∴CF⊥DE(三线合一).【点睛】本题考查了全等三角形的性质和判定,平行线的性质,等腰三角形的性质等知识点,关键是求出DC=CE,主要考查了学生运用定理进行推理的能力.22、(1)y=(x>0);(2)S与t的函数关系式为:S=﹣3t+9(0≤t≤3);S=9﹣(t>3);当S=时,对应的t值为或6;(3)当t=或或3时,使△FBO为等腰三角形.【解析】

(1)由正方形OABC的面积为9,可得点B的坐标为:(3,3),继而可求得该反比例函数的解析式.

(2)由题意得P(t,),然后分别从当点P1在点B的左侧时,S=t•(-3)=-3t+9与当点P2在点B的右侧时,则S=(t-3)•=9-去分析求解即可求得答案;

(3)分别从OB=BF,OB=OF,OF=BF去分析求解即可求得答案.【详解】解:(1)∵正方形OABC的面积为9,∴点B的坐标为:(3,3),∵点B在反比例函数y=(k>0,x>0)的图象上,∴3=,即k=9,∴该反比例函

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论