![山东省济宁市梁山一中高一数学《简单的线性规划》课件_第1页](http://file4.renrendoc.com/view4/M00/0F/39/wKhkGGYMJymAaVttAABWByk36Mg640.jpg)
![山东省济宁市梁山一中高一数学《简单的线性规划》课件_第2页](http://file4.renrendoc.com/view4/M00/0F/39/wKhkGGYMJymAaVttAABWByk36Mg6402.jpg)
![山东省济宁市梁山一中高一数学《简单的线性规划》课件_第3页](http://file4.renrendoc.com/view4/M00/0F/39/wKhkGGYMJymAaVttAABWByk36Mg6403.jpg)
![山东省济宁市梁山一中高一数学《简单的线性规划》课件_第4页](http://file4.renrendoc.com/view4/M00/0F/39/wKhkGGYMJymAaVttAABWByk36Mg6404.jpg)
![山东省济宁市梁山一中高一数学《简单的线性规划》课件_第5页](http://file4.renrendoc.com/view4/M00/0F/39/wKhkGGYMJymAaVttAABWByk36Mg6405.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
简单的线性规划简单的线性规划复习回顾新课讲授课堂练习小结课后作业复习回顾新课讲授课堂练习小结课后作业
不等式2x+y-6<0表示的平面区域.Oxy1.二元一次不等式和二元一次不等式组表示的平面区域?
由于对在直线Ax+By+C=0同一侧的所有点(x,y),把它的坐标(x,y)代Ax+By+C,所得到实数的符号都相同,所以只需在此直线的某一侧取一特殊点(x0,y0),从Ax0+By0+C的正负即可判断Ax+By+C>0表示直线哪一侧的平面区域.(特殊地,当C≠0时,常把原点作为此特殊点)一.复习回顾判断可行区域的方法:不等式2x+y-6<0表示的平面区域.O2.设z=2x+y,式中x、y满足下列条件求z的最大值和最小值.xOy返回2.设z=2x+y,式中x、y满足下列条件求z的最大【引例】某工厂用A、B两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A配件并耗时1h,每生产一件乙产品使用4个B配件并耗时2h,该厂每天最多可从配件厂获得16个A配件和12个B配件,按每天工作8h计算,该厂所有可能的日生产安排是什么?若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排获得的利润最大?二.新课讲授【引例】某工厂用A、B两种配件生产甲、乙两种产品,每生产一件,解:设甲、乙两种产品的日生产分别为x,y件时,工厂获得的利润为z万元,则x,y满足约束条件为作出约束条件所表示的可行域,如右图所示目标函数为z=2x+3y,可变形为如图,作直线当直线平移经过可行域时,在点M处达到y轴上截距的最大值,即此时z有最大值.解方程组(1)
,解:设甲、乙两种产品的日生产分别为x,y件时,工厂获得,得点M(4,2),当每天安排生产4件甲产品,2件乙产品时,工厂获利最大为14万元.,得点M(4,2),当每天安排生产4件甲产品,2件乙产品时,
不等式组(1)是一组对变量x、y的约束条件,这组约束条件都是关于x、y的一次不等式,所以又称为线性约束条件.
z=2x+3y是欲达到最大值或最小值所涉及的变量x、y的解析式,叫做目标函数.
由于z=2x+3y又是x、y的一次解析式,所以又叫做线性目标函数.
求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.
在上述问题中,可行域就是阴影部分表示的三角行区域.其中可行解M(4,2)使目标函数取得最大值和最小值,它们都叫做这个问题的最优解.满足线性约束条件的解(x,y)叫做可行解,由所有可行解组成的集合叫做可行域.不等式组(1)是一组对变量x、y的约束条件,这组约束条件【练习1】营养学家指出,成人良好的日常饮食应该至少提供0.075kg的碳水化合物,0.06kg的蛋白质,0.06kg的脂肪.1kg食物A含有0.105kg碳水化合物,0.07kg蛋白质,0.14kg脂肪,花费28元;而1kg食物B含有0.105kg碳水化合物,0.14kg蛋白质,0.07kg脂肪,花费21元.为了满足营养专家指出的日常饮食要求,同时使花费最低,需要同时食用食物A和食物B多少kg?三.课堂练习【练习1】营养学家指出,成人良好的日常饮食应该至少提供0.0解:设每天食用xkg食物A,
ykg食物B,总花费为z元,则目标函数为z=28x+21y且x、y满足约束条件,整理为作出约束条件所表示的可行域,如右图所示目标函数可变形为如图,作直线,当直线平移经过可行域时,在点M处达到轴上截距的最小值,即此时有最小值.解方程组,解:设每天食用xkg食物A,ykg食物B,总花费为z元,,得点M的坐标为,
每天需要同时食用食物A约0.143kg,食物B约0.571kg,能够满足日常饮食要求,且花费最低16元.得点M的坐标为,每天需要同时食用食物A约0.143k0(图1)【练习2】
如图1所示,已知△ABC中的三顶点A(2,4),B(-1,2),C(1,0),点P(x,y)在△ABC内部及边界运动,请你探究并讨论以下问题:①在_____处有最大值___,在____处有最小值____;③你能否设计一个目标函数,使得其取最优解的情况有无穷多个?④请你分别设计目标函数,使得最值点分别在A处、B处、C处取得?⑤(课后思考题)若目标函数是你知道其几何意义吗??如果是或②
在___处有最大值____,在____处有最小值____;呢?你能否借助其几何意义求得z=x+yz=x-yz=x2+y2,zmin和zmaxA(2,4)C(0,1)B(-1,2)0(图1)【练习2】在△ABC内部及边界运动,①在____0ABC(图2)0ABC(如图2,①②问参考答案:①z=x+y在点A处有最大值
6,在边界BC处有最小值
1;②z=x+y
在点C处有最大值
1,在点B处有最小值
-3)
0ABC(图2)0ABC(如图2,①②问参考答案:①评述:简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题出,其求解的格式与步骤是不变的:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解评述:四.课堂小结
用图解法解决简单的线性规划问题的基本步骤:
1、首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域)
2、设t=0,画出直线l
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电子通讯技术在金融领域的应用与创新
- 电子产品的智能化与环保型包装探索
- 知识宝库中的宝藏知识产权的投资潜力和实践路径探索
- 幼儿园月工作计划范文
- 商铺委托经营协议书范本
- 电子商务平台的物流配送效率提升
- 电子商情的趋势及物流智能化对策分析
- 美国大学入学合同范本(2篇)
- 产业园合作框架协议书范本
- 分布式屋顶光伏电站屋顶租赁协议书范本
- IEC-62368-1-差异分享解读
- 双溪漂流可行性报告
- 采购流程各部门关系图
- 力士乐工程机械液压培训资料(共7篇)课件
- 英语单词词根
- 问题学生转化策略课件
- GMP附录计算机化系统整体及条款解读
- 村光伏发电申请书
- 腰椎间盘突出症中医特色疗法课件
- 施工现场专项消防安全检查表
- 如何当好学校的中层干部
评论
0/150
提交评论