2024届湖北省武汉市武珞路中学中考数学模试卷含解析_第1页
2024届湖北省武汉市武珞路中学中考数学模试卷含解析_第2页
2024届湖北省武汉市武珞路中学中考数学模试卷含解析_第3页
2024届湖北省武汉市武珞路中学中考数学模试卷含解析_第4页
2024届湖北省武汉市武珞路中学中考数学模试卷含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届湖北省武汉市武珞路中学中考数学模试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.为了锻炼学生身体素质,训练定向越野技能,某校在一公园内举行定向越野挑战赛.路线图如图1所示,点E为矩形ABCD边AD的中点,在矩形ABCD的四个顶点处都有定位仪,可监测运动员的越野进程,其中一位运动员P从点B出发,沿着B﹣E﹣D的路线匀速行进,到达点D.设运动员P的运动时间为t,到监测点的距离为y.现有y与t的函数关系的图象大致如图2所示,则这一信息的来源是()A.监测点A B.监测点B C.监测点C D.监测点D2.下列各数:1.414,,﹣,0,其中是无理数的为()A.1.414 B. C.﹣ D.03.在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是()A. B. C. D.4.如图,将一张三角形纸片的一角折叠,使点落在处的处,折痕为.如果,,,那么下列式子中正确的是()A. B. C. D.5.用圆心角为120°,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的高是()A.cm B.3cm C.4cm D.4cm6.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴的正半轴相交于A,B两点,与y轴相交于点C,对称轴为直线x=2,且OA=OC.有下列结论:①abc<0;②3b+4c<0;③c>﹣1;④关于x的方程ax2+bx+c=0有一个根为﹣,其中正确的结论个数是()A.1 B.2 C.3 D.47.已知a,b,c在数轴上的位置如图所示,化简|a+c|-|a-2b|-|c+2b|的结果是()A.4b+2c B.0 C.2c D.2a+2c8.△ABC在正方形网格中的位置如图所示,则cosB的值为()A. B. C. D.29.若分式有意义,则x的取值范围是A.x>1 B.x<1 C.x≠1 D.x≠010.我市连续7天的最高气温为:28°,27°,30°,33°,30°,30°,32°,这组数据的平均数和众数分别是()A.28°,30° B.30°,28° C.31°,30° D.30°,30°11.已知反比例函数y=的图象位于第一、第三象限,则k的取值范围是()A.k>8 B.k≥8 C.k≤8 D.k<812.如图,⊙O的直径AB垂直于弦CD,垂足为E.若,AC=3,则CD的长为A.6 B. C. D.3二、填空题:(本大题共6个小题,每小题4分,共24分.)13.对于一元二次方程,根的判别式中的表示的数是__________.14.1017年11月7日,山西省人民政府批准发布的《山西省第一次全国地理国情普查公报》显示,山西省国土面积约为156700km1,该数据用科学记数法表示为__________km1.15.(11·湖州)如图,已知A、B是反比例函数(k>0,x<0)图象上的两点,BC∥x轴,交y轴于点C.动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C.过P作PM⊥x轴,PN⊥y轴,垂足分别为M、N.设四边形OMPN的面积为S,P点运动时间为t,则S关于t的函数图象大致为16.如图,已知直线l:y=x,过点(2,0)作x轴的垂线交直线l于点N,过点N作直线l的垂线交x轴于点M1;过点M1作x轴的垂线交直线l于N1,过点N1作直线l的垂线交x轴于点M2,……;按此做法继续下去,则点M2000的坐标为______________.17.已知抛物线y=x2﹣x+3与y轴相交于点M,其顶点为N,平移该抛物线,使点M平移后的对应点M′与点N重合,则平移后的抛物线的解析式为_____.18.以下两题任选一题作答:(1).下图是某商场一楼二楼之间的手扶电梯示意图,其中AB、CD分别表示一楼、二楼地面的水平,∠ABC=150°,BC的长是8m,则乘电梯次点B到点C上升的高度h是_____m.(2).一个多边形的每一个内角都是与它相邻外角的3倍,则多边形是_____边形.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知AB是⊙O的直径,CD与⊙O相切于C,BE∥CO.(1)求证:BC是∠ABE的平分线;(2)若DC=8,⊙O的半径OA=6,求CE的长.20.(6分)校园空地上有一面墙,长度为20m,用长为32m的篱笆和这面墙围成一个矩形花圃,如图所示.能围成面积是126m2的矩形花圃吗?若能,请举例说明;若不能,请说明理由.若篱笆再增加4m,围成的矩形花圃面积能达到170m2吗?请说明理由.21.(6分)如图,某中学数学课外学习小组想测量教学楼的高度,组员小方在处仰望教学楼顶端处,测得,小方接着向教学楼方向前进到处,测得,已知,,.(1)求教学楼的高度;(2)求的值.22.(8分)随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷每人必选且只选一种,在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:这次统计共抽查了______名学生;在扇形统计图中,表示“QQ”的扇形圆心角的度数为______;将条形统计图补充完整;该校共有1500名学生,请估计该校最喜欢用“微信”进行沟通的学生有多少名.23.(8分)如图,已知⊙O经过△ABC的顶点A、B,交边BC于点D,点A恰为的中点,且BD=8,AC=9,sinC=,求⊙O的半径.24.(10分)如图所示,AB是⊙O的直径,AE是弦,C是劣弧AE的中点,过C作CD⊥AB于点D,CD交AE于点F,过C作CG∥AE交BA的延长线于点G.求证:CG是⊙O的切线.求证:AF=CF.若sinG=0.6,CF=4,求GA的长.25.(10分)为响应“植树造林、造福后人”的号召,某班组织部分同学义务植树棵,由于同学们的积极参与,实际参加的人数比原计划增加了,结果每人比原计划少栽了棵,问实际有多少人参加了这次植树活动?26.(12分)如图,四边形ABCD为平行四边形,∠BAD的角平分线AF交CD于点E,交BC的延长线于点F.(1)求证:BF=CD;(2)连接BE,若BE⊥AF,∠BFA=60°,BE=,求平行四边形ABCD的周长.27.(12分)下表中给出了变量x,与y=ax2,y=ax2+bx+c之间的部分对应值,(表格中的符号“…”表示该项数据已丢失)x﹣101ax2……1ax2+bx+c72…(1)求抛物线y=ax2+bx+c的表达式(2)抛物线y=ax2+bx+c的顶点为D,与y轴的交点为A,点M是抛物线对称轴上一点,直线AM交对称轴右侧的抛物线于点B,当△ADM与△BDM的面积比为2:3时,求B点坐标;(3)在(2)的条件下,设线段BD与x轴交于点C,试写出∠BAD和∠DCO的数量关系,并说明理由.

参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解析】试题解析:、由监测点监测时,函数值随的增大先减少再增大.故选项错误;、由监测点监测时,函数值随的增大而增大,故选项错误;、由监测点监测时,函数值随的增大先减小再增大,然后再减小,选项正确;、由监测点监测时,函数值随的增大而减小,选项错误.故选.2、B【解析】试题分析:根据无理数的定义可得是无理数.故答案选B.考点:无理数的定义.3、D【解析】

根据平移不改变图形的形状和大小,将题中所示的图案通过平移后可以得到的图案是D.【详解】解:观察图形可知图案D通过平移后可以得到.

故选D.【点睛】本题考查图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转.4、A【解析】

分析:根据三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得结论.详解:由折叠得:∠A=∠A',∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',∵∠A=α,∠CEA′=β,∠BDA'=γ,∴∠BDA'=γ=α+α+β=2α+β,故选A.点睛:本题考查了三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键.5、C【解析】

利用扇形的弧长公式可得扇形的弧长;让扇形的弧长除以2π即为圆锥的底面半径,利用勾股定理可得圆锥形筒的高.【详解】L==4π(cm);圆锥的底面半径为4π÷2π=2(cm),∴这个圆锥形筒的高为(cm).故选C.【点睛】此题考查了圆锥的计算,用到的知识点为:圆锥侧面展开图的弧长=;圆锥的底面周长等于侧面展开图的弧长;圆锥的底面半径,母线长,高组成以母线长为斜边的直角三角形.6、B【解析】

由二次函数图象的开口方向、对称轴及与y轴的交点可分别判断出a、b、c的符号,从而可判断①;由对称轴=2可知a=,由图象可知当x=1时,y>0,可判断②;由OA=OC,且OA<1,可判断③;把-代入方程整理可得ac2-bc+c=0,结合③可判断④;从而可得出答案.【详解】解:∵图象开口向下,∴a<0,∵对称轴为直线x=2,∴>0,∴b>0,∵与y轴的交点在x轴的下方,∴c<0,∴abc>0,故①错误.∵对称轴为直线x=2,∴=2,∴a=,∵由图象可知当x=1时,y>0,∴a+b+c>0,∴4a+4b+4c>0,∴4()+4b+4c>0,∴3b+4c>0,故②错误.∵由图象可知OA<1,且OA=OC,∴OC<1,即-c<1,∴c>-1,故③正确.∵假设方程的一个根为x=-,把x=-代入方程可得+c=0,整理可得ac-b+1=0,两边同时乘c可得ac2-bc+c=0,∴方程有一个根为x=-c,由③可知-c=OA,而当x=OA是方程的根,∴x=-c是方程的根,即假设成立,故④正确.综上可知正确的结论有三个:③④.故选B.【点睛】本题主要考查二次函数的图象和性质.熟练掌握图象与系数的关系以及二次函数与方程、不等式的关系是解题的关键.特别是利用好题目中的OA=OC,是解题的关键.7、A【解析】由数轴上点的位置得:b<a<0<c,且|b|>|c|>|a|,∴a+c>0,a−2b>0,c+2b<0,则原式=a+c−a+2b+c+2b=4b+2c.故选:B.点睛:本题考查了整式的加减以及数轴,涉及的知识有:去括号法则以及合并同类项法则,熟练掌握运算法则是解本题的关键.8、A【解析】

解:在直角△ABD中,BD=2,AD=4,则AB=,则cosB=.故选A.9、C【解析】

分式分母不为0,所以,解得.故选:C.10、D【解析】试题分析:数据28°,27°,30°,33°,30°,30°,32°的平均数是(28+27+30+33+30+30+32)÷7=30,30出现了3次,出现的次数最多,则众数是30;故选D.考点:众数;算术平均数.11、A【解析】

本题考查反比例函数的图象和性质,由k-8>0即可解得答案.【详解】∵反比例函数y=的图象位于第一、第三象限,∴k-8>0,解得k>8,故选A.【点睛】本题考查了反比例函数的图象和性质:①、当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②、当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.12、D【解析】

解:因为AB是⊙O的直径,所以∠ACB=90°,又⊙O的直径AB垂直于弦CD,,所以在Rt△AEC中,∠A=30°,又AC=3,所以CE=AB=,所以CD=2CE=3,故选D.【点睛】本题考查圆的基本性质;垂经定理及解直角三角形,综合性较强,难度不大.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、-5【解析】

分清一元二次方程中,二次项系数、一次项系数和常数项,直接解答即可.【详解】解:表示一元二次方程的一次项系数.【点睛】此题考查根的判别式,在解一元二次方程时程根的判别式△=b2-4ac,不要盲目套用,要看具体方程中的a,b,c的值.a代表二次项系数,b代表一次项系数,c是常数项.14、1.267×102【解析】

科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于126700有6位,所以可以确定n=6﹣1=2.【详解】解:126700=1.267×102.故答案为1.267×102.【点睛】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.15、A【解析】试题分析:①当点P在OA上运动时,OP=t,S=OM•PM=tcosα•tsinα,α角度固定,因此S是以y轴为对称轴的二次函数,开口向上;②当点P在AB上运动时,设P点坐标为(x,y),则S=xy=k,为定值,故B、D选项错误;③当点P在BC上运动时,S随t的增大而逐渐减小,故C选项错误.故选A.考点:1.反比例函数综合题;2.动点问题的函数图象.16、(24001,0)【解析】分析:根据直线l的解析式求出,从而得到根据直角三角形30°角所对的直角边等于斜边的一半求出然后表示出与的关系,再根据点在x轴上,即可求出点M2000的坐标详解:∵直线l:∴∵NM⊥x轴,M1N⊥直线l,∴∴同理,…,所以,点的坐标为点M2000的坐标为(24001,0).故答案为:(24001,0).点睛:考查了一次函数图象上点的坐标特征,根据点的坐标求线段的长度,以及如何根据线段的长度求出点的坐标,注意各相关知识的综合应用.17、y=(x﹣1)2+【解析】

直接利用抛物线与坐标轴交点求法结合顶点坐标求法分别得出M、N点坐标,进而得出平移方向和距离,即可得出平移后解析式.【详解】解:y=x2-x+3=(x-)2+,∴N点坐标为:(,),令x=0,则y=3,∴M点的坐标是(0,3).∵平移该抛物线,使点M平移后的对应点M′与点N重合,∴抛物线向下平移个单位长度,再向右平移个单位长度即可,∴平移后的解析式为:y=(x-1)2+.故答案是:y=(x-1)2+.【点睛】此题主要考查了抛物线与坐标轴交点求法以及二次函数的平移,正确得出平移方向和距离是解题关键.18、48【解析】

(1)先求出斜边的坡角为30°,再利用含30°的直角三角形即可求解;(2)设这个多边形边上为n,则内角和为(n-2)×180°,外角度数为故可列出方程求解.【详解】(1)∵∠ABC=150°,∴斜面BC的坡角为30°,∴h==4m(2)设这个多边形边上为n,则内角和为(n-2)×180°,外角度数为依题意得解得n=8故为八边形.【点睛】此题主要考查含30°的直角三角形与多边形的内角和计算,解题的关键是熟知含30°的直角三角形的性质与多边形的内角和公式.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)证明见解析;(2)4.1.【解析】试题分析:(1)由BE∥CO,推出∠OCB=∠CBE,由OC=OB,推出∠OCB=∠OBC,可得∠CBE=∠CBO;(2)在Rt△CDO中,求出OD,由OC∥BE,可得,由此即可解决问题;试题解析:(1)证明:∵DE是切线,∴OC⊥DE,∵BE∥CO,∴∠OCB=∠CBE,∵OC=OB,∴∠OCB=∠OBC,∴∠CBE=∠CBO,∴BC平分∠ABE.(2)在Rt△CDO中,∵DC=1,OC=0A=6,∴OD==10,∵OC∥BE,∴,∴,∴EC=4.1.考点:切线的性质.20、(1)长为18米、宽为7米或长为14米、宽为9米;(1)若篱笆再增加4m,围成的矩形花圃面积不能达到172m1.【解析】

(1)假设能,设AB的长度为x米,则BC的长度为(31﹣1x)米,再根据矩形面积公式列方程求解即可得到答案.(1)假设能,设AB的长度为y米,则BC的长度为(36﹣1y)米,再根据矩形面积公式列方程,求得方程无解,即假设不成立.【详解】(1)假设能,设AB的长度为x米,则BC的长度为(31﹣1x)米,根据题意得:x(31﹣1x)=116,解得:x1=7,x1=9,∴31﹣1x=18或31﹣1x=14,∴假设成立,即长为18米、宽为7米或长为14米、宽为9米.(1)假设能,设AB的长度为y米,则BC的长度为(36﹣1y)米,根据题意得:y(36﹣1y)=172,整理得:y1﹣18y+85=2.∵△=(﹣18)1﹣4×1×85=﹣16<2,∴该方程无解,∴假设不成立,即若篱笆再增加4m,围成的矩形花圃面积不能达到172m1.21、(1)12m;(2)【解析】

(1)利用即可求解;(2)通过三角形外角的性质得出,则,设,则,在中利用勾股定理即可求出BC,BD的长度,最后利用即可求解.【详解】解:(1)在中,,答:教学楼的高度为;(2)设,则,故,解得:,则故.【点睛】本题主要考查解直角三角形,掌握勾股定理及正切,余弦的定义是解题的关键.22、(1)100,108°;(2)答案见解析;(3)600人.【解析】

(1)先利用QQ计算出宗人数,再用百分比计算度数;(2)按照扇形图补充条形图;(3)利用微信沟通所占百分比计算总人数.【详解】解:(1)喜欢用电话沟通的人数为20,所占百分比为20%,∴此次共抽查了:20÷20%=100人.喜欢用QQ沟通所占比例为:,∴QQ的扇形圆心角的度数为:360°×=108°.(2)喜欢用短信的人数为:100×5%=5人喜欢用微信的人数为:100-20-5-30-5=40补充图形,如图所示:(3)喜欢用微信沟通所占百分比为:×100%=40%.∴该校共有1500名学生,估计该校最喜欢用“微信”进行沟通的学生有:1500×40%=600人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.23、⊙O的半径为.【解析】

如图,连接OA.交BC于H.首先证明OA⊥BC,在Rt△ACH中,求出AH,设⊙O的半径为r,在Rt△BOH中,根据BH2+OH2=OB2,构建方程即可解决问题。【详解】解:如图,连接OA.交BC于H.∵点A为的中点,∴OA⊥BD,BH=DH=4,∴∠AHC=∠BHO=90°,∵,AC=9,∴AH=3,设⊙O的半径为r,在Rt△BOH中,∵BH2+OH2=OB2,∴42+(r﹣3)2=r2,∴r=,∴⊙O的半径为.【点睛】本题考查圆心角、弧、弦的关系、垂径定理、勾股定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.24、(1)见解析;(2)见解析;(3)AG=1.【解析】

(1)利用垂径定理、平行的性质,得出OC⊥CG,得证CG是⊙O的切线.(2)利用直径所对圆周角为和垂直的条件得出∠2=∠B,再根据等弧所对的圆周角相等得出∠1=∠B,进而证得∠1=∠2,得证AF=CF.(3)根据直角三角形的性质,求出AD的长度,再利用平行的性质计算出结果.【详解】(1)证明:连结OC,如图,∵C是劣弧AE的中点,∴OC⊥AE,∵CG∥AE,∴CG⊥OC,∴CG是⊙O的切线;(2)证明:连结AC、BC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠2+∠BCD=90°,而CD⊥AB,∴∠B+∠BCD=90°,∴∠B=∠2,∵C是劣弧AE的中点,∴,∴∠1=∠B,∴∠1=∠2,∴AF=CF;(3)解:∵CG∥AE,∴∠FAD=∠G,∵sinG=0.6,∴sin∠FAD==0.6,∵∠CDA=90°,AF=CF=4,∴DF=2.4,∴AD=3.2,∴CD=CF+DF=6.4,∵AF∥CG,∴,∴∴DG=,∴AG=DG﹣AD=1.【点睛】本题主要考查与圆有关的位置关系和圆中的计算问题,掌握切线的判定定理以及解直角三角形是解题的关键.25、人【解析】

解:设原计划有x人参加了这次植树活动依题意得:解得x=30人经检验x=30是原方程式的根实际参加了这次植树活动1.5x=45人答实际有45人参加了这次植树活动.26、(1)证明见解析;(2)12【解析】

(1)由平行四边形的性质和角平分线得出∠BAF=∠BFA,即可得出AB=BF;(2)由题意可证△ABF为等边三角形,点E是AF的中点.可求EF、BF的值,即可得解.【详解】解:(1)证明:∵四边形ABCD为平行四边形,∴AB=CD,∠FAD=∠AFB又∵AF平分∠BAD,∴∠FAD=∠FAB∴∠AFB=∠FAB∴AB=BF∴BF=CD(2)解:由题意可证△ABF为等边三角形,点E是AF的中点在Rt△BEF中,∠BFA=60°,BE=,可求EF=2,BF=4∴平行四边形ABCD的周长为1227、(1)y=x2﹣4x+2;(2)点B的坐标为(5,7);(1)∠BAD和∠DCO互补,理由详见解析.【解析】

(1)由(1,1)在抛物线y=ax2上可求出a值,再由(﹣1,7)、(0,2)在抛物线y=x2+bx+c上可求出b、c的值,此题得解;(2)由△ADM

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论