综合解析人教版数学八年级上册期中综合复习试题 卷(Ⅲ)(含详解)_第1页
综合解析人教版数学八年级上册期中综合复习试题 卷(Ⅲ)(含详解)_第2页
综合解析人教版数学八年级上册期中综合复习试题 卷(Ⅲ)(含详解)_第3页
综合解析人教版数学八年级上册期中综合复习试题 卷(Ⅲ)(含详解)_第4页
综合解析人教版数学八年级上册期中综合复习试题 卷(Ⅲ)(含详解)_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题35分)一、单选题(5小题,每小题3分,共计15分)1、将一副三角尺按如图所示的方式摆放,则的大小为(

)A. B. C. D.2、观察下列作图痕迹,所作线段为的角平分线的是(

)A. B.C. D.3、如图为了测量B点到河对面的目标A之间的距离,在B点同侧选择了一点C,测得∠ABC=65°,∠ACB=35°,然后在M处立了标杆,使∠MBC=65°,∠MCB=35°,得到△MBC≌△ABC,所以测得MB的长就是A,B两点间的距离,这里判定△MBC≌△ABC的理由是()A.SAS B.AAA C.SSS D.ASA4、如图,△ABC中,∠B=2∠A,∠ACB的平分线CD交AB于点D,已知AC=16,BC=9,则BD的长为()A.6 B.7 C.8 D.95、如图,在△ABC中,∠C=90°,O为△ABC的三条角平分线的交点,OD⊥BC,OE⊥AC,OF⊥AB,点D、E、F分别是垂足,且AB=10cm,BC=8cm,CA=6cm,则点O到边AB的距离为(

)······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······二、多选题(5小题,每小题4分,共计20分)1、如图,AD是的中线,E,F分别是AD和AD延长线上的点,且,连结BF,CE.下列说法中正确的有()A.CE=BF; B.△ABD和△ACD面积相等; C.BF∥CE; D.△BDF≌△CDE2、下列不是真命题的是()A.如果a>b,a>c,那么b=cB.相等的角是对顶角C.一个角的补角大于这个角D.一个三角形中至少有两个锐角3、如图,在中,,是角平分线,是中线,则下列结论,其中不正确的结论是(

)A. B. C. D.4、如图,为估计池塘岸边A,B两点间的距离,小方在池塘的一侧选取一点O,测得米,米,A,B间的距离可能是(

)A.12米 B.10米 C.15米 D.8米5、如图,BE=CF,AB=DE,添加下列哪些条件不能推证△ABC≌△DEF(

A.BC=EF B.∠C=∠F C.AB∥DE D.∠A=∠D第Ⅱ卷(非选择题65分)三、填空题(5小题,每小题5分,共计25分)1、如图,已知在四边形中,厘米,厘米,厘米,,点为线段的中点.如果点在线段上以3厘米/秒的速度由点向点运动,同时,点在线段上由点向点运动.当点的运动速度为___________厘米/秒时,能够使与以,,三点所构成的三角形全等.2、已知△ABC,∠A=80°,BF平分外角∠CBD,CF平分外角∠BCE,BG平分∠CBF,CG平分外角∠BCF,则∠G=______°.······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······3、在ABC中,AB=AC,点D在BC上(不与点B,C重合).只需添加一个条件即可证明ABD≌ACD,这个条件可以是________(写出一个即可)4、如图,沿直线AB翻折后能与重合,沿直线AC翻折后能与重合,AD与CE相交于点F,若,,,则________.5、有一张直角三角形纸片,记作△ABC,其中∠B=90°.按如图方式剪去它的一个角(虚线部分),在剩下的四边形ADEC中,若∠1=165°,则∠2的度数为_____°.四、解答题(5小题,每小题8分,共计40分)1、如图,已知.(1)请用尺规作图.在内部找一点,使得点到、、的距离相等,(不写作图步骤,保留作图痕迹);(2)若的周长为,面积为,求点到的距离.2、如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,并判断此时线段PC和线段PQ的位置关系,请分别说明理由;(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA=60°”,其他条件不变.设点Q的运动速度为xcm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.3、如图,BC⊥AD,垂足为点C,∠A27°,∠BED44°.求:(1)∠B的度数;(2)∠BFD的度数.······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······4、如图,在△ABC中,点D为∠ABC的平分线BD上一点,连接AD,过点D作EF∥BC交AB于点E,交AC于点F.(1)如图1,若AD⊥BD于点D,∠BEF=120°,求∠BAD的度数;(2)如图2,若∠ABC=α,∠BDA=β,求∠FAD十∠C的度数(用含α和β的代数式表示).5、在中,,D为BC延长线上一点,点E为线段AC,CD的垂直平分线的交点,连接EA,EC,ED.(1)如图1,当时,则_______°;(2)当时,①如图2,连接AD,判断的形状,并证明;②如图3,直线CF与ED交于点F,满足.P为直线CF上一动点.当的值最大时,用等式表示PE,PD与AB之间的数量关系为_______,并证明.-参考答案-一、单选题1、B【解析】【分析】先根据直角三角板的性质得出∠ACD的度数,再由三角形内角和定理即可得出结论.【详解】解:如图所示,由一副三角板的性质可知:∠ECD=60°,∠BCA=45°,∠D=90°,∴∠ACD=∠ECD-∠BCA=60°-45°=15°,∴∠α=180°-∠D-∠ACD=180°-90°-15°=75°,故选:B.【考点】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.2、C······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······【分析】根据角平分线画法逐一进行判断即可.【详解】:所作线段为AB边上的高,选项错误;B:做图痕迹为AB边上的中垂线,CD为AB边上的中线,选项错误;C:CD为的角平分线,满足题意。D:所作线段为AB边上的高,选项错误故选:C.【考点】本题考查点到直线距离的画法,角平分线的画法,中垂线的画法,能够区别彼此之间的不同是解题切入点.3、D【解析】【分析】利用全等三角形的判定方法进行分析即可.【详解】解:在△ABC和△MBC中,∴△MBC≌△ABC(ASA),故选:D.【考点】本题考查了全等三角形的应用,熟练掌握三角形全等的判定定理是解题的关键.4、B【解析】【分析】如图,在上截取连接证明利用全等三角形的性质证明求解再证明从而可得答案.【详解】解:如图,在上截取连接平分······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······故选:【考点】本题考查的是全等三角形的判定与性质,等腰三角形的判定,掌握以上知识是解题的关键.5、A【解析】【分析】根据角平分线的性质得到OE=OF=OD,设OE=x,然后利用三角形面积公式得到S△ABC=S△OAB+S△OAC+S△OCB,于是可得到关于x的方程,从而可得到OF的长度.【详解】解:∵点O为△ABC的三条角平分线的交点,∴OE=OF=OD,设OE=x,∵S△ABC=S△OAB+S△OAC+S△OCB,∴∴5x+3x+4x=24,∴x=2,∴点O到AB的距离等于2.故选:A.【考点】本题考查了角平分线的性质:角平分线上的点到这个角两边的距离相等,面积法的应用是解题的关键.二、多选题1、ABCD【解析】【分析】根据题意,结合已知条件与全等的判定方法对选项一一进行分析论证,排除错误答案.【详解】是的中线,,又,,,故D选项正确.∴,故A选项正确;BF∥CE;故C选项正确.是的中线,和等底等高,和面积相等,故B选项正确;故选:ABCD.【考点】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.2、ABC【解析】【分析】······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······【详解】解:A、如果a>b,a>c,不能判断b,c的大小,原命题是假命题;B、相等的角不一定是对顶角,原命题是假命题;C、一个角的补角不一定大于这个角,原命题是假命题;D、一个三角形中至少有两个锐角,原命题是真命题;故选:ABC.【考点】本题考查了命题与定理的知识,解题的关键是了解不等式的性质、对顶角的性质、三角形和补角的性质,属于基础知识,难度不大.3、ACD【解析】【分析】根据三角形中线的定义:在三角形中,连接一个顶点和它所对的边的中点的线段,和角平分线的定义进行逐一判断即可.【详解】解:∵AD是角平分线,∠BAC=90°,∴∠DAB=∠DAC=45°,故B选项不符合题意;∵AE是中线,∴AE=EC,∴,故D符合题意;∵AD不是中线,AE不是角平分线,∴得不到BD=CD,∠ABE=∠CBE,∴A和C选项都符合题意,故选ACD.【考点】本题主要考查了三角形中线的定义,角平分线的定义,解题的关键在于能够熟练掌握相关定义.4、ABD【解析】【分析】根据三角形的三边之间的关系逐一判断即可得到答案.【详解】解:中,<<<<符合题意,不符合题意;故选:【考点】本题考查的是三角形的三边关系的应用,掌握三角形的任意两边之和大于第三边,任意两边之差小于第三边是解题的关键.5、ABD【解析】【分析】根据题目中的条件,可以得到BC=EF,AB=DE,然后即可判断各个选项中添加的条件是否能使得△ABC≌△DEF,从而可以解答本题.【详解】······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······∴BE+EC=CF+EC,∴BC=EF,又∵AB=DE,∴添加条件BC=EF,根据SS不能判断△ABC≌△DEF,故选项A符合题意;添加条件∠C=∠F,根据SSA不能判断△ABC≌△DEF,故选项B符合题意;添加条件AB∥DE,可以得到∠B=∠DEF,根据(SAS)可判断△ABC≌△DEF,故选项C不符合题意;添加条件∠A=∠D,根据SSA不能判断△ABC≌△DEF,故选项D符合题意;故选:ABD.【考点】本题主要考查了全等三角形的判定,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.三、填空题1、3或【解析】【分析】分两种情况讨论,依据全等三角形的对应边相等,即可得到点Q的运动速度.【详解】解:设点P运动的时间为t秒,则BP=3t,CP=8﹣3t,∵∠B=∠C,∴①当BE=CP=6,BP=CQ时,△BPE与△CQP全等,此时,6=8﹣3t,解得t,∴BP=CQ=2,此时,点Q的运动速度为23厘米/秒;②当BE=CQ=6,BP=CP时,△BPE与△CQP全等,此时,3t=8﹣3t,解得t,∴点Q的运动速度为6厘米/秒;故答案为:3或.【考点】本题考查了全等三角形的性质和判定的应用,解题的关键是掌握全等三角形的对应边相等.2、115【解析】【分析】由三角形外角的性质即三角形的内角和定理可求解∠DBC+∠ECB=260°,再利用角平分线的定义可求解∠FBC+∠FCB=130°,即可得∠GBC+∠GCB=65°,再利用三角形内角和定理可求解.【详解】解:∵∠DBC=∠A+∠ACB,∠ECB=∠A+∠ABC,∴∠DBC+∠ECB=∠A+∠ACB+∠A+∠ABC,······线······○······封······○······密······○······内······○······号学 级年 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······∴∠DBC+∠ECB=∠A+180°=80°+180°=260°,∵BF平分外角∠DBC,CF平分外角∠ECB,∴∠FBC=∠DBC,∠FCB=∠ECB,∴∠FBC+∠FCB=(∠DBC+∠ECB)=130°,∵BG平分∠CBF,CG平分∠BCF,∴∠GBC=∠FBC,∠GCB=∠FCB,∴∠GBC+∠GCB=(∠FBC+∠FCB)=65°,∴∠G=180°-(∠GBC-∠GCB)=180°-65°=115°.故答案为:115.【考点】本题主要考查三角形的内角和定理,三角形外角的性质,角平分线的定义,求解∠FBC+∠FCB=130°是解题的关键.3、∠BAD=∠CAD(或BD=CD)【解析】【分析】证明ABD≌ACD,已经具备根据选择的判定三角形全等的判定方法可得答案.【详解】解:要使则可以添加:∠BAD=∠CAD,此时利用边角边判定:或可以添加:此时利用边边边判定:故答案为:∠BAD=∠CAD或()【考点】本题考查的是三角形全等的判定,属开放性题,掌握三角形全等的判定是解题的关键.4、123【解析】【分析】根据折叠前后对应角相等和三角形内角和定理可得∠BAD=∠BAC=133°,∠ACE=∠ACB=29°,再求出∠DAC,根据三角形外角的性质可求得m.【详解】解:∵,,∴∠BAC=180°-18°-29°=133°,∵沿直线AB翻折后能与重合,沿直线AC翻折后能与重合,∴∠BAD=∠BAC=133°,∠ACE=∠ACB=29°,∴∠DAC=360°-∠BAD-∠BAC=94°,∴∠CFD=∠ACE+∠DAC=29°+94°=123°,即m=123,故答案为:123.【考点】本题考查三角形内角和定理和外角定理,折叠的性质.理解折叠前后对应角相等是解题关键.5、105°.【解析】······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······根据三角形内角和定理结合∠B的度数即可得出∠BDE+∠BED的度数,再根据∠BDE与∠2互补、∠BED与∠1互补,即可求出∠1+∠2的度数,代入∠1=165°即可得出结论.【详解】∵∠B=90°,∴∠BDE+∠BED=180°-∠B=90°,又∵∠BDE+∠2=180°,∠BED+∠1=180°,∴∠1+∠2=360°-(∠BDE+∠BED)=270°.∵∠1=165°,∴∠2=105°.故答案为:105.【考点】本题考查了三角形内角和定理,根据三角形内角和定理求出∠BDE+∠BED的度数是解题的关键.四、解答题1、(1)见解析(2)【解析】【分析】(1)根据题意作的角平分线的交点,即为所求;(2)根据(1)的结论,设点到的距离为,则,解方程求解即可.(1)如图,点即为所求,(2)设点到的距离为,由(1)可知点到、、的距离相等则解得:点到的距离为【考点】本题考查了作角平分线,角平分线的性质,掌握角平分线的性质是解题的关键.2、(1)全等,理由见详解;PC⊥PQ,理由见解析;(2)存在,或.【解析】【分析】(1)利用SAS证得△ACP≌△BPQ,得出∠ACP=∠BPQ,进一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;(2)由△ACP≌△BPQ,分两种情况:①AC=BP,AP=BQ,②AC=BQ,AP=BP,建立方程组求得答案即可.······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······解:(1)当时,,,又,在和中,.,.,即线段与线段垂直.(2)①若,则,,则,解得:;②若,则,,则,解得:;综上所述,存在或使得与全等.【考点】本题主要考查了全等三角形的判定与性质,两边及其夹角分别对应相等的两个三角形全等.在解题时注意分类讨论思想的运用.3、(1)63°;(2)107°【解析】【分析】(1)根据垂直的定义可得,进而根据三角形内角和定理即可求得;(2)根据三角形的外角的性质即可求得.【详解】解:(1)BC⊥AD,∠A27°,(2)∠BED44°,【考点】本题考查了三角形的内角和定理与三角形的外角性质,掌握以上知识是解题的关键.4、(1)60°;(2)β-α.【解析】【分析】(1)根据平行线的性质和平角的定义可得∠EBC=60°,∠AEF=60°,根据角平分线的性质和平行线的性质可得∠EBD=∠BDE=∠DBC=30°,再根据三角形内角和定理可求∠BAD的度数;······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······(2)过点A作AG∥BC,则∠BDA=∠DBC+∠DAG=∠······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密·

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论