版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题35分)一、单选题(5小题,每小题3分,共计15分)1、若长度分别是a、3、5的三条线段能组成一个三角形,则a的值可以是(
)A.1 B.2 C.4 D.82、下列说法:①若,则为的中点②若,则是的平分线③,则④若,则,其中正确的有(
)A.1个 B.2个 C.3个 D.4个3、平面内,将长分别为1,5,1,1,d的线段,顺次首尾相接组成凸五边形(如图),则d可能是(
)A.1 B.2 C.7 D.84、如图,在中,,,,,连接BC,CD,则的度数是()A.45° B.50° C.55° D.80°5、如图,在△ABC中,AC=5,AB=7,AD平分∠BAC,DE⊥AC,DE=2,则△ABC的面积为()A.14 B.12 C.10 D.7二、多选题(5小题,每小题4分,共计20分)1、如图,EA∥DF,AE=DF,要使△AEC≌△DFB,可以添加的条件有()A.AB=CD B.AC=BD C.∠A=∠D D.∠E=∠F2、以下列数字为长度的各组线段中,能构成三角形的有()A.1,2,3 B.2,3,4 C.3,4,5 D.4,5,63、下列作图语句不正确的是()A.作射线AB,使AB=a B.作∠AOB=∠aC.延长直线AB到点C,使AC=BC D.以点O为圆心作弧······线······○······封······○······密······○······内······○······号学 级年 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······A.△OCD B.△OAB C.△OAF D.△OEF5、如图,等腰三角形ABC中,AB=AC,D、E都在BC上,要使△ABD≌△ACE,添加一个条件可行的是(
)
A.AD=AE B.BD=CE C.BE=CD D.∠BAD=∠CAE第Ⅱ卷(非选择题65分)三、填空题(5小题,每小题5分,共计25分)1、如果一个多边形的内角和为1260°,那么从这个多边形的一个顶点可以连___________条对角线.2、某学校七年级的八个班进行足球比赛,比赛采用单循环制(即每两个班都进行一场比赛),则一共需要进行________场比赛.3、在三角形的三条高中,位于三角形外的可能条数是______条.4、一个多边形的每一个外角都等于60°,则这个多边形的内角和为_____度.5、如图,在△ABC中,∠A=60°,BD、CD分别平分∠ABC、∠ACB,M、N、Q分别在DB、DC、BC的延长线上,BE、CE分别平分∠MBC、∠BCN,BF、CF分别平分∠EBC、∠ECQ,则∠F=________.四、解答题(5小题,每小题8分,共计40分)1、如图,在△ABC中,∠A=∠DBC=36°,∠C=72°.求∠1,∠2的度数.2、在中,,D为BC延长线上一点,点E为线段AC,CD的垂直平分线的交点,连接EA,EC,ED.(1)如图1,当时,则_______°;(2)当时,①如图2,连接AD,判断的形状,并证明;······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······②如图3,直线CF与ED交于点F,满足······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······3、如图,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD.(1)求证:△BCE≌△DCF;(2)求证:AB+AD=2AE.4、如图,点C、F在线段BE上,∠ABC=∠DEF=90°,BC=EF,请只添加一个合适的条件使△ABC≌△DEF.(1)根据“ASA”,需添加的条件是;根据“HL”,需添加的条件是;(2)请从(1)中选择一种,加以证明.5、如图,是边长为1的等边三角形,,,点,分别在,上,且,求的周长.-参考答案-一、单选题1、C【解析】【分析】根据三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边,求出a的取值范围即可得解.【详解】根据三角形的三边关系得,即,则选项中4符合题意,故选:C.【考点】本题主要考查了三角形的三边关系,熟练掌握相关不等关系是解决本题的关键.2、A【解析】【分析】······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······【详解】当三点不在同一直线上的时候,点C不是AB的中点,故错误;当OC位于∠AOB的内部时候,此结论成立,故错误;当为负数时,,故错误;若,则,故正确;故选:A.【考点】此题主要考查直线中点、角平分线、有理数大小比较以及绝对值的性质,熟练掌握,即可解题.3、C【解析】【分析】如图(见解析),设这个凸五边形为,连接,并设,先在和中,根据三角形的三边关系定理可得,,从而可得,,再在中,根据三角形的三边关系定理可得,从而可得,由此即可得出答案.【详解】解:如图,设这个凸五边形为,连接,并设,在中,,即,在中,,即,所以,,在中,,所以,观察四个选项可知,只有选项C符合,故选:C.【考点】本题考查了三角形的三边关系定理,通过作辅助线,构造三个三角形是解题关键.4、B【解析】【分析】连接AC并延长交EF于点M.由平行线的性质得,,再由等量代换得,先求出即可求出.【详解】解:连接AC并延长交EF于点M.,,,,,······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······,故选B.【考点】本题主要考查了平行线的性质以及三角形的内角和定理,属于基础题型.5、B【解析】【分析】过点D作DF⊥AB于点F,利用角平分线的性质得出,将的面积表示为面积之和,分别以AB为底,DF为高,AC为底,DE为高,计算面积即可求得.【详解】过点D作DF⊥AB于点F,∵AD平分∠BAC,DE⊥AC,DF⊥AB,∴,∴,故选:B.【考点】本题考查角平分线的性质,角平分线上的点到角两边的距离相等,熟记性质作出辅助线是解题关键.二、多选题1、ABD【解析】【分析】由AE∥DF可得∠A=∠D,要判定△AEC≌△DFB,已知一边一角,根据三角形全等的判定方法,如果要加边相等,只能是AC=DB(或AB=CD);如果要加角相等,可以是∠E=∠F或者是∠ACE=∠DBF,结合四个选项即可求解.【详解】解:∵AE∥DF,∴∠A=∠D,A、∵AB=CD,∴AB+BC=CD+BC,即AC=DB,又∵AE=DF,∠A=∠D,∴根据SAS能推出△AEC≌△DFB,故本选项符合题意;B、∵AC=BD,AE=DF,∠A=∠D,∴根据SAS能推出△AEC≌△DFB,故本选项符合题意;C、∵∠A=∠D,AE=DF,∴不能推出△AEC≌△DFB,故本选项不符合题意;D、∵∠E=∠F,AE=DF,∠A=∠D,∴根据ASA能推出△AEC≌△DFB,故本选项符合题意;······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······【考点】本题考查了全等三角形的判定定理和平行线的性质,能熟记全等三角形的判定定理的内容是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.2、BCD【解析】【分析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边,逐项判断即可.【详解】解:A.不能组成三角形,该项不符合题意;B.,该项符合题意;C.,该项符合题意;D.,该项符合题意;故选:BCD.【考点】本题考查三角形的成立条件,掌握三角形的三边关系是解题的关键.3、ACD【解析】【分析】根据射线的性质对A进行判断;根据作一个角等于已知角对B进行判断;根据直线的性质对C进行判断;画弧要确定圆心与半径,则可对D进行判断;.【详解】解:A、射线是不可度量的,故本选项错误;B、∠AOB=∠α,故本选项正确;C、直线向两方无限延伸没有延长线,故本选项错误;D、需要说明半径的长,故选项错误.故选:ACD.【考点】本题考查了作图-尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图,也考查了直线、射线的性质.4、ABD【解析】【分析】利用平移的定义和性质求解,平移不改变图形的形状和大小。图形经过平移,对应线段相等,对应角相等,对应点所连的线段相等。.【详解】解:O是正六边形ABCDE的中心,都是等边三角形,都不能由平移得到,可以由平移得到,故符合题意,不符合题意;故选:【考点】本题考查的是正多边形的性质,平移的定义,平移的性质,熟悉平移的含义与性质是解题的关键.5、ABCD【解析】【分析】······线······○······封······○······密······○······内······○······号学 级年 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······【详解】解:∵在△ABC中,AB=AC,∴∠B=∠C,当AD=AE时,∴∠ADE=∠AED,∵∠ADE=∠B+∠BAD,∠AED=∠C+∠CAE,∴∠BAD=∠CAE,然后根据SAS或ASA或AAS可判定△ABD≌△ACE;当BD=CE时,根据SAS可判定△ABD≌△ACE;当BE=CD时,∴BE−DE=CD−DE,即BD=CE,根据SAS可判定△ABD≌△ACE;当∠BAD=∠CAE时,根据ASA可判定△ABD≌△ACE.综上所述ABCD均可判定△ABD≌△ACE.故选:ABCD.【考点】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,题目比较好,难度适中.三、填空题1、6【解析】【分析】首先根据多边形内角和公式可得多边形的边数,再计算出对角线的条数.【详解】解:设此多边形的边数为n,由题意得:(n-2)×180=1260,解得;n=9,从这个多边形的一个顶点出发所画的对角线条数:9-3=6,故答案为:6.【考点】此题主要考查了多边形的内角和计算公式求多边形的边数,关键是掌握多边形的内角和公式180(n-2).2、28.【解析】【分析】由于每个班都要和另外的7个班赛一场,一共要赛:7×8=56(场);又因为两个班只赛一场,去掉重复计算的情况,实际只赛:56÷2=28(场),据此解答.【详解】解:8×(8-1)÷2=8×7÷2=56÷2=28(场)答:一共需要进行28场比赛.故答案为28.······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······本题考查了握手问题的实际应用,要注意去掉重复计算的情况,如果班级比较少可以用枚举法解答,如果班级比较多可以用公式:比赛场数=n(n-1)÷2解答.3、0或2【解析】【分析】当三角形为钝角三角形时,三角形的高有两条在三角形外,一条在三角形内;当三角形为直角三角形和锐角三角形时没有高在三角形外.【详解】解:∵当三角形为直角三角形和锐角三角形时,没有高在三角形外;而当三角形为钝角三角形时,三角形的高有两条在三角形外,一条在三角形内.∴在三角形的三条高中,位于三角形外的可能条数是0或2条故答案为0或2.【考点】此题主要考查了三角形的高的位置,不同形状的三角形,它的高的情况不同,要求学生必须熟练掌握.4、720【解析】【分析】先根据外角和与外角的度数求出多边形的边数,再根据多边形内角和公式计算即可.【详解】∵多边形的每一个外角都为60°,∴它的边数:,∴它的内角和:,故答案为:720.【考点】此题考查了多边形内角和与外角和,关键是正确计算多边形的边数.5、15°【解析】【分析】先由BD、CD分别平分∠ABC、∠ACB得到∠DBC=∠ABC,∠DCB=∠ACB,在△ABC中根据三角形内角和定理得∠DBC+∠DCB=(∠ABC+∠ACB)=(180°-∠A)=60°,则根据平角定理得到∠MBC+∠NCB=300°;再由BE、CE分别平分∠MBC、∠BCN得∠5+∠6=∠MBC,∠1=∠NCB,两式相加得到∠5+∠6+∠1=(∠NCB+∠NCB)=150°,在△BCE中,根据三角形内角和定理可计算出∠E=30°;再由BF、CF分别平分∠EBC、∠ECQ得到∠5=∠6,∠2=∠3+∠4,根据三角形外角性质得到∠3+∠4=∠5+∠F,∠2+∠3+∠4=∠5+∠6+∠E,利用等量代换得到∠2=∠5+∠F,2∠2=2∠5+∠E,再进行等量代换可得到∠F=∠E.【详解】解:∵BD、CD分别平分∠ABC、∠ACB,∠A=60°,∴∠DBC=∠ABC,∠DCB=∠ACB,∴∠DBC+∠DCB=(∠ABC+∠ACB)=(180°-∠A)=×(180°-60°)=60°,∴∠MBC+∠NCB=360°-60°=300°,∵BE、CE分别平分∠MBC、∠BCN,∴∠5+∠6=∠MBC,∠1=∠NCB,······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······∴∠E=180°-(∠5+∠6+∠1)=180°-150°=30°,∵BF、CF分别平分∠EBC、∠ECQ,∴∠5=∠6,∠2=∠3+∠4,∵∠3+∠4=∠5+∠F,∠2+∠3+∠4=∠5+∠6+∠E,即∠2=∠5+∠F,2∠2=2∠5+∠E,∴2∠F=∠E,∴∠F=∠E=×30°=15°.故答案为:15°.【考点】本题考查了三角形内角和定理:三角形内角和是180°.也考查了三角形外角性质.四、解答题1、∠1=36°,∠2=72°.【解析】【分析】在△ABC和△BDC中,根据三角形内角和定理,即可得出结论.【详解】在△ABC中,∠ABC=180°﹣∠A﹣∠C=180°-36°-72°=72°,∴∠1=∠ABC﹣∠DBC=72°-36°=36°;在△BCD中,∠2=180°﹣∠DBC﹣∠C=180°-36°-72°=72°.【考点】本题考查了三角形的内角和定理,注意掌握数形结合思想的应用.2、(1)80;(2)是等边三角形;(3).【解析】【分析】(1)根据垂直平分线性质可知,再结合等腰三角形性质可得,,利用平角定义和四边形内角和定理可得,由此求解即可;(2)根据(1)的结论求出即可证明是等边三角形;(3)根据利用对称和三角形两边之差小于第三边,找到当的值最大时的P点位置,再证明对称点与AD两点构成三角形为等边三角形,利用旋转全等模型即可证明,从而可知,再根据30°直角三角形性质可知即可得出结论.【详解】解:(1)∵点E为线段AC,CD的垂直平分线的交点,∴,∴,,∴,∵,∴,∵,∴,······线······○······封······○······密······○······内······○······号学 级年 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······∴,∴,故答案为:.(2)①结论:是等边三角形.证明:∵在中,,,∴,由(1)得:,,∴是等边三角形.②结论:.证明:如解图1,取D点关于直线AF的对称点,连接、;∴,∵,等号仅P、E、三点在一条直线上成立,如解图2,P、E、三点在一条直线上,由(1)得:,又∵,∴,又∵,,∴,∵点D、点是关于直线AF的对称点,∴,,∴是等边三角形,∴,,∵是等边三角形,∴,,∴,∴,在和中,,······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······∴,∵,∴,在中,,,∴,∴【考点】本题是三角形综合题,主要考查了等腰三角形、等边三角形的性质和判定,全等三角形性质和判定等知识点,解题关键是利用对称将转化为三角形三边关系找到P的位置,并证明对称点与AD两点构成三角形为等边三角形.3、详见解析【解析】【分析】(1)由角平分线定义可证△BCE≌△DCF(HL);(2)先证Rt△FAC≌Rt△EAC,得AF=AE,由(1)可得AB+AD=(AE+BE)+(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 智研咨询发布:2024年中国变压器行业市场现状及投资前景分析报告
- 二零二五个人退伙合作协议(旅游文化产业特定)2篇
- 重庆市集成电路产业发展政策优化研究
- RIS辅助的低轨卫星通信系统覆盖性能优化策略研究
- 二零二五年度专业运输个人承包合同范本2篇
- 二零二五版养老保险待遇领取资格终止争议处理合同3篇
- 二零二五年度个人金融衍生品交易合同范本2篇
- 二零二五版个人合伙健身俱乐部退伙会员权益协议2篇
- 二零二五年度个人商铺租赁合同涉及租赁保证金退还细则2篇
- 近年来我国药事管理工作的重大事件
- 2024年泰州职业技术学院高职单招数学历年参考题库含答案解析
- 人教版初中英语七八九全部单词(打印版)
- 牛顿环与劈尖实验论文
- 最高人民法院婚姻法司法解释(二)的理解与适用
- 移动商务内容运营(吴洪贵)任务四 其他平台载体的运营方式
- 关于医保应急预案
- 浙教版科学八年级下册全册课件
- 2022年中国止血材料行业概览:发展现状对比分析研究报告(摘要版) -头豹
- GB/T 22482-2008水文情报预报规范
- 普通生物学笔记(陈阅增)完整版-PDF转换成word转换器
- 零售学(第二版)第01章零售导论
评论
0/150
提交评论