综合解析人教版数学八年级上册期中专题训练试题 卷(Ⅱ)(解析版)_第1页
综合解析人教版数学八年级上册期中专题训练试题 卷(Ⅱ)(解析版)_第2页
综合解析人教版数学八年级上册期中专题训练试题 卷(Ⅱ)(解析版)_第3页
综合解析人教版数学八年级上册期中专题训练试题 卷(Ⅱ)(解析版)_第4页
综合解析人教版数学八年级上册期中专题训练试题 卷(Ⅱ)(解析版)_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题35分)一、单选题(5小题,每小题3分,共计15分)1、如图,,则A.45° B.55° C.35° D.65°2、如图,B,C,E,F四点在一条直线上,下列条件能判定与全等的是(

)A. B.C. D.3、利用边长相等的正三角形和正六边形地板砖镶嵌地面,在每个顶点周围有块正三角形和块正六边形地板砖,则的值为(

)A.3或4 B.4或5 C.5或6 D.44、图中的小正方形边长都相等,若,则点Q可能是图中的(

)A.点D B.点C C.点B D.点A5、如图为了测量B点到河对面的目标A之间的距离,在B点同侧选择了一点C,测得∠ABC=65°,∠ACB=35°,然后在M处立了标杆,使∠MBC=65°,∠MCB=35°,得到△MBC≌△ABC,所以测得MB的长就是A,B两点间的距离,这里判定△MBC≌△ABC的理由是()A.SAS B.AAA C.SSS D.ASA二、多选题(5小题,每小题4分,共计20分)1、在四边形ABCD中,ADBC,若∠DAB的平分线AE交CD于E,连接BE,且BE也平分∠ABC,则以下的命题中正确的是()A.BC+AD=AB B.E为CD中点C.∠AEB=90° D.S△ABE=S四边形ABCD2、在下列正多边形组合中,能铺满地面的是(

)A.正八边形和正方形 B.正五边形和正八边形······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······3、如图,O是直线上一点,A,B分别是,平分线上的点,于点E,于点C,于点D,则下列结论中,正确的是(

)A. B.C.与互余的角有两个 D.O是的中点4、以下列数字为长度的各组线段中,能构成三角形的有()A.1,2,3 B.2,3,4 C.3,4,5 D.4,5,65、如图,AD是的中线,E,F分别是AD和AD延长线上的点,且,连结BF,CE.下列说法中正确的有()A.CE=BF; B.△ABD和△ACD面积相等; C.BF∥CE; D.△BDF≌△CDE第Ⅱ卷(非选择题65分)三、填空题(5小题,每小题5分,共计25分)1、如果一个正多边形的一个内角是135°,则这个正多边形是_____.2、如图,E为△ABC的BC边上一点,点D在BA的延长线上,DE交AC于点F,∠B=46°,∠C=30°,∠EFC=70°,则∠D=______.3、如图a∥b,∠1+∠2=75°,则∠3+∠4=______________.4、如图,在四边形ABCD中,∠A+∠B=210°,作∠ADC、∠BCD的平分线交于点O1,再作∠O1DC、∠O1CD的平分线交于点O2,则∠O2的度数为_______________.5、若直角三角形的一个锐角为,则另一个锐角等于________.四、解答题(5小题,每小题8分,共计40分)1、如图,AD是∠BAC的角平分线,DE⊥AB,DF⊥AC,BD=CD.求证:EB=FC.2、如图,A,B,C,D依次在同一条直线上,,BF与EC相交于点M.求······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······3、如图,在△ABC中,∠A=∠DBC=36°,∠C=72°.求∠1,∠2的度数.4、如图,是边长为1的等边三角形,,,点,分别在,上,且,求的周长.5、在中,,,为直线上一点,连接,过点作交于点,交于点,在直线上截取,连接.(1)当点,都在线段上时,如图①,求证:;(2)当点在线段的延长线上,点在线段的延长线上时,如图②;当点在线段的延长线上,点在线段的延长线上时,如图③,直接写出线段,,之间的数量关系,不需要证明.-参考答案-一、单选题1、B【解析】【分析】求出BE=CF,根据SSS证出△AEB≌△DFC,推出∠C=∠B,根据全等三角形的判定推出即可.【详解】解答:证明:∵,∴,∴BE=CF,在△AEB和△DFC中,······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······∴△AEB≌△DFC(SSS),∴∠C=∠B=55°.【考点】本题考查了全等三角形的性质和判定,解此题的关键是推出△AEB≌△DFC,注意:全等三角形的对应边相等,对应角相等.2、A【解析】【分析】根据全等三角形的判定条件逐一判断即可.【详解】解:A、∵,∴,∵,∴,即在和中∵∴,故A符合题意;B、∵,∴,再由,不可以利用SSA证明两个三角形全等,故B不符合题意;C、∵,∴,再由,不可以利用SSA证明两个三角形全等,故C不符合题意;D、∵,∴,,再由,不可以利用AAA证明两个三角形全等,故D不符合题意;故选A.【考点】本题主要考查了全等三角形的判定,熟知全等三角形的判定条件是解题的关键.3、B【解析】【分析】正多边形的组合能否进行平面镶嵌,关键是看位于同一顶点处的几个角之和能否为360°.若能,则说明可以进行平面镶嵌;反之,则说明不能进行平面镶嵌.【详解】∵正三边形和正六边形内角分别为60°、120°,60°×4+120°=360°,或60°×2+120°×2=360°,∴a=4,b=1或a=2,b=2,①当a=4,b=1时,a+b=5;②当a=2,b=2时,a+b=4.故选B.【考点】解决此类题,可以记住几个常用正多边形的内角,及能够用两种正多边形镶嵌的几个组合.4、A【解析】······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······根据全等三角形的判定即可解决问题.【详解】解:观察图象可知△MNP≌△MFD.故选:A.【考点】本题考查全等三角形的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.5、D【解析】【分析】利用全等三角形的判定方法进行分析即可.【详解】解:在△ABC和△MBC中,∴△MBC≌△ABC(ASA),故选:D.【考点】本题考查了全等三角形的应用,熟练掌握三角形全等的判定定理是解题的关键.二、多选题1、ABCD【解析】【分析】在AB上截取AF=AD.证明△AED≌△AEF,△BEC≌△BEF.可证4个结论都正确.【详解】解:在AB上截取AF=AD则△AED≌△AEF(SAS)∴∠AFE=∠D.∵ADBC,∴∠D+∠C=180°.∴∠C=∠BFE.∴△BEC≌△BEF(AAS).∴①BC=BF,故AB=BC+AD;②CE=EF=ED,即E是CD中点;③∠AEB=∠AEF+∠BEF=∠DEF+∠CEF=×180°=90°;④S△AEF=S△AED,S△BEF=S△BEC,······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······∴S△AEB=S四边形BCEF+S······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······故选ABCD.【考点】此题考查全等三角形的判定与性质,运用了截取法构造全等三角形解决问题,难度中等.2、ACD【解析】【分析】正多边形的组合能否铺满地面,关键是看位于同一顶点处的几个角之和能否为360°.若能,则说明能铺满;反之,则说明不能铺满.【详解】解:A、正方形的每个内角是90°,正八边形的每个内角是135°,由于90+2×135=360,故能铺满,符合题意;B、正五边形和正八边形内角分别为108°、135°,显然不能构成360°的周角,故不能铺满,不合题意;C、正六边形和正三角形内角分别为120°、60°,由于60×4+120=360,故能铺满,符合题意;D、正三角形、正方形内角分别为60°、90°,由于60×3+90×2=360,故能铺满,符合题意.故选:ACD.【考点】本题考查了平面密铺的知识,几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.3、ABD【解析】【分析】根据角平分线的性质得,,等量代换得出,故A选项正确;根据角平分线性质得,,又因为即可得,故B选项正确;根据互余的定义和性质可得与互余的角有4个,故C选项错误;因为OC=OE=OD,所以点O是CD的中点,故D选项正确;即可得出结果.【详解】解:∵A,B分别是,的角平分线上的点,∴,,∵,∴,故A选项说法正确,符合题意;∵A,B分别是,的角平分线上的点,∴,,又∵,∴,故B选项说法正确,符合题意;∵,∴与互余,∵,∴,∴与互余,∵,,,······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······∴与互余,∵,,,∴,∴与互余,综上,与互余的角有4个,故C选项说法错误,不符合题意;∵OC=OE=OD,∴点O是CD的中点,故D选项说法正确,符合题意;故选ABD.【考点】本题考查了角平分线的性质,邻补角,余角的性质,线段的中点,解题的关键是掌握角平分线的性质,邻补角,余角的性质,线段的中点.4、BCD【解析】【分析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边,逐项判断即可.【详解】解:A.不能组成三角形,该项不符合题意;B.,该项符合题意;C.,该项符合题意;D.,该项符合题意;故选:BCD.【考点】本题考查三角形的成立条件,掌握三角形的三边关系是解题的关键.5、ABCD【解析】【分析】根据题意,结合已知条件与全等的判定方法对选项一一进行分析论证,排除错误答案.【详解】是的中线,,又,,,故D选项正确.∴,故A选项正确;BF∥CE;故C选项正确.是的中线,和等底等高,和面积相等,故B选项正确;故选:ABCD.【考点】······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······三、填空题1、正八边形【解析】【分析】根据正多边形的外角和为即可求出正多边形的边数.【详解】解:∵正多边形的一个内角是135°,∴它的每一个外角为45°.又因为多边形的外角和恒为360°,360°÷45°=8,即该正多边形为正八边形.故答案为:正八边形.【考点】本题主要考查正多边形的外角和,掌握正多边形的外角和是解决问题的关键.2、34°##34度【解析】【分析】根据题意先求∠DAC,再依据△ADF三角形内角和180°可得答案.【详解】解:∵∠B=46°,∠C=30°,∴∠DAC=∠B+∠C=76°,∵∠EFC=70°,∴∠AFD=70°,∴∠D=180°-∠DAC-∠AFD=34°,故答案为:34°.【考点】本题考查三角形内角和定理及三角形一个外角等于不相邻的两个内角的和,解题的关键是掌握三角形内角和定理.3、105°【解析】【分析】根据平行线的性质和等量代换可以求得∠3+∠4=∠5+∠4,所以根据三角形内角和是180°进行解答即可.【详解】如图,∵a∥b,∴∠3=∠5,又∠1+∠2=75°,∠1+∠2+∠4+∠5=180°,∴∠5+∠4=105°,∴∠3+∠4=∠5+∠4=105°,故答案是:105°.······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······本题考查了平行线的性质和三角形内角和定理.解题的技巧性在于把求(∠3+∠4)的值转化为求同一三角形内的(∠5+∠4)的值.4、【解析】【分析】先根据、的平分线交于点,得出,再根据、的平分线交于点,得出,再进行计算即可【详解】解:∵在四边形ABCD中,∠A+∠B=210°,∴∠ADC+∠DCB=150°,、的平分线交于点,,、的平分线交于点,=,∴∠O2=180°-37.5°=,故答案为:【考点】本题主要考查了多边形的内角与外角以及角平分线的定义的运用,解决问题的关键是找出操作的变化规律,得到∠O2与∠ADC+∠DCB之间的关系.5、75°【解析】【分析】根据三角形内角和定理计算即可.【详解】解:∵另一个锐角为15°,∴另一个锐角为180°-90°-15°=75°,故答案为:75°.【考点】本题考查了直角三角形的性质,解题的关键是掌握直角三角形两锐角互余.四、解答题1、见解析【解析】【分析】根据角平分线的性质和已知条件,得出DE=DF,证明△BDE与△CDF全等,进而得出结论.【详解】证明:∵AD是∠BAC的角平分线DE⊥AB,DF⊥AC,

∴DE=DF,∠DEB=∠DFC=90°,∴△BDE与△CDF是直角三角形.在Rt△BDE与Rt△CDF中∵······线······○······封······○······密······○······内······○······号学 级年 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······∴BE=CF.【考点】本题考查了角平分线的性质与全等三角形的判定,解题的关键是熟练掌握判定定理.2、见解析【解析】【分析】由AB=CD,得AC=BD,再利用SAS证明△AEC≌△DFB,即可得结论.【详解】证明:,,.在和中,,.【考点】本题主要考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.3、∠1=36°,∠2=72°.【解析】【分析】在△ABC和△BDC中,根据三角形内角和定理,即可得出结论.【详解】在△ABC中,∠ABC=180°﹣∠A﹣∠C=180°-36°-72°=72°,∴∠1=∠ABC﹣∠DBC=72°-36°=36°;在△BCD中,∠2=180°﹣∠DBC﹣∠C=180°-36°-72°=72°.【考点】本题考查了三角形的内角和定理,注意掌握数形结合思想的应用.4、2【解析】【分析】延长至点,使,连接,证明推出,,进而得到,从而证明,推出EF=CP,由此求出的周长=AB+AC得到答案.【详解】解:如图,延长至点,使,连接.∵是等边三角形,∴.∵,,∴,∴,∴.······线······○······封······○······密······○······内······○······号学 级年 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······∴,∴,.∵,,∴,∴,∴.在和中,,∴,∴,∴,∴的周长.【考点】此题考查全等三角形的判定及性质,等边三角形的性质,等腰三角形等边对等角的性质,题中辅助线的引出是解题的关键.5、(1)见解析;(2)图②:;图③:【解析】【分析】(1)过点作交的延长线于点.证明,根据全等三角形的性质可得,.再证,由此即可证得结论;(2)图②:,类比(1)中的方法证明即可;图③:,类比(1)中的方法证明即可.【详解】(1)证明:如图,过点作交的延长线于点.0∴.∵,∴,.∵,······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线·····

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论