2024届安徽省滁州市凤阳县重点名校中考数学五模试卷含解析_第1页
2024届安徽省滁州市凤阳县重点名校中考数学五模试卷含解析_第2页
2024届安徽省滁州市凤阳县重点名校中考数学五模试卷含解析_第3页
2024届安徽省滁州市凤阳县重点名校中考数学五模试卷含解析_第4页
2024届安徽省滁州市凤阳县重点名校中考数学五模试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届安徽省滁州市凤阳县重点名校中考数学五模试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1.如果(,均为非零向量),那么下列结论错误的是()A.// B.-2=0 C.= D.2.某微生物的直径为0.000005035m,用科学记数法表示该数为()A.5.035×10﹣6 B.50.35×10﹣5 C.5.035×106 D.5.035×10﹣53.如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E、F、G、H分别为边AD、AB、BC、CD的中点.若AC=10,BD=6,则四边形EFGH的面积为()A.20 B.15 C.30 D.604.一元二次方程x2-2x=0的解是()A.x1=0,x2=2 B.x1=1,x2=2 C.x1=0,x2=-2 D.x1=1,x2=-25.若2m﹣n=6,则代数式m-n+1的值为()A.1 B.2 C.3 D.46.如图,在正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,连接AF交CG于M点,则FM=()A. B. C. D.7.下列几何体中,主视图和左视图都是矩形的是()A. B. C. D.8.如图,⊙O的直径AB垂直于弦CD,垂足为E.若,AC=3,则CD的长为A.6 B. C. D.39.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=-1,x2=3;③3a+c>0;④当y>0时,x的取值范围是-1≤x<3;⑤当x<0时,y随x增大而增大.其中结论正确的个数是()A.4个 B.3个 C.2个 D.1个10.的值是()A.1 B.﹣1 C.3 D.﹣3二、填空题(本大题共6个小题,每小题3分,共18分)11.等腰△ABC的底边BC=8cm,腰长AB=5cm,一动点P在底边上从点B开始向点C以0.25cm/秒的速度运动,当点P运动到PA与腰垂直的位置时,点P运动的时间应为_____秒.12.关于x的方程ax=x+2(a1)的解是________.13.因式分解:4x2y﹣9y3=_____.14.四边形ABCD中,向量_____________.15.掷一枚材质均匀的骰子,掷得的点数为合数的概率是__________.16.如图,经过点B(-2,0)的直线与直线相交于点A(-1,-2),则不等式的解集为.三、解答题(共8题,共72分)17.(8分)为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.

请根据所给信息,解答以下问题:

表中___;____请计算扇形统计图中B组对应扇形的圆心角的度数;

已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.18.(8分)如图,一次函数y=ax﹣1的图象与反比例函数的图象交于A,B两点,与x轴交于点C,与y轴交于点D,已知OA=,tan∠AOC=(1)求a,k的值及点B的坐标;(2)观察图象,请直接写出不等式ax﹣1≥的解集;(3)在y轴上存在一点P,使得△PDC与△ODC相似,请你求出P点的坐标.19.(8分)如图,已知函数(x>0)的图象经过点A、B,点B的坐标为(2,2).过点A作AC⊥x轴,垂足为C,过点B作BD⊥y轴,垂足为D,AC与BD交于点F.一次函数y=ax+b的图象经过点A、D,与x轴的负半轴交于点E.若AC=OD,求a、b的值;若BC∥AE,求BC的长.20.(8分)(7分)某中学1000名学生参加了”环保知识竞赛“,为了了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取整数,满分为100分)作为样本进行统计,并制作了如图频数分布表和频数分布直方图(不完整且局部污损,其中“■”表示被污损的数据).请解答下列问题:成绩分组频数频率50≤x<6080.1660≤x<7012a70≤x<80■0.580≤x<9030.0690≤x≤100bc合计■1(1)写出a,b,c的值;(2)请估计这1000名学生中有多少人的竞赛成绩不低于70分;(3)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取两名同学参加环保知识宣传活动,求所抽取的2名同学来自同一组的概率.21.(8分)(1)解不等式组:;(2)解方程:.22.(10分)在同一时刻两根木竿在太阳光下的影子如图所示,其中木竿AB=2m,它的影子BC=1.6m,木竿PQ落在地面上的影子PM=1.8m,落在墙上的影子MN=1.1m,求木竿PQ的长度.23.(12分)某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.该网店甲、乙两种羽毛球每筒的售价各是多少元?根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.①若设购进甲种羽毛球m筒,则该网店有哪几种进货方案?②若所购进羽毛球均可全部售出,请求出网店所获利润W(元)与甲种羽毛球进货量m(筒)之间的函数关系式,并说明当m为何值时所获利润最大?最大利润是多少?24.某市为了解市民对已闭幕的某一博览会的总体印象,利用最新引进的“计算机辅助电话访问系统”(简称CATI系统),采取电脑随机抽样的方式,对本市年龄在16~65岁之间的居民,进行了400个电话抽样调查.并根据每个年龄段的抽查人数和该年龄段对博览会总体印象感到满意的人数绘制了下面的图(1)和图(1)(部分)根据上图提供的信息回答下列问题:(1)被抽查的居民中,人数最多的年龄段是岁;(1)已知被抽查的400人中有83%的人对博览会总体印象感到满意,请你求出31~40岁年龄段的满意人数,并补全图1.注:某年龄段的满意率=该年龄段满意人数÷该年龄段被抽查人数×100%.

参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】试题解析:向量最后的差应该还是向量.故错误.故选B.2、A【解析】试题分析:0.000005035m,用科学记数法表示该数为5.035×10﹣6,故选A.考点:科学记数法—表示较小的数.3、B【解析】

有一个角是直角的平行四边形是矩形.利用中位线定理可得出四边形EFGH是矩形,根据矩形的面积公式解答即可.【详解】∵点E、F分别为四边形ABCD的边AD、AB的中点,∴EF∥BD,且EF=BD=1.同理求得EH∥AC∥GF,且EH=GF=AC=5,又∵AC⊥BD,∴EF∥GH,FG∥HE且EF⊥FG.四边形EFGH是矩形.∴四边形EFGH的面积=EF•EH=1×5=2,即四边形EFGH的面积是2.故选B.【点睛】本题考查的是中点四边形.解题时,利用了矩形的判定以及矩形的定理,矩形的判定定理有:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(1)对角线互相平分且相等的四边形是矩形.4、A【解析】试题分析:原方程变形为:x(x-1)=0x1=0,x1=1.故选A.考点:解一元二次方程-因式分解法.5、D【解析】

先对m-n+1变形得到(2m﹣n)+1,再将2m﹣n=6整体代入进行计算,即可得到答案.【详解】mn+1=(2m﹣n)+1当2m﹣n=6时,原式=×6+1=3+1=4,故选:D.【点睛】本题考查代数式,解题的关键是掌握整体代入法.6、C【解析】

由正方形的性质知DG=CG-CD=2、AD∥GF,据此证△ADM∽△FGM得,求出GM的长,再利用勾股定理求解可得答案.【详解】解:∵四边形ABCD和四边形CEFG是正方形,

∴AD=CD=BC=1、CE=CG=GF=3,∠ADM=∠G=90°,

∴DG=CG-CD=2,AD∥GF,

则△ADM∽△FGM,∴,即,解得:GM=,∴FM===,故选:C.【点睛】本题主要考查相似三角形的判定与性质,解题的关键是熟练掌握正方形的性质、相似三角形的判定与性质及勾股定理等知识点.7、C【解析】

主视图、左视图是分别从物体正面、左面和上面看,所得到的图形.依此即可求解.【详解】A.主视图为圆形,左视图为圆,故选项错误;B.主视图为三角形,左视图为三角形,故选项错误;C.主视图为矩形,左视图为矩形,故选项正确;D.主视图为矩形,左视图为圆形,故选项错误.故答案选:C.【点睛】本题考查的知识点是截一个几何体,解题的关键是熟练的掌握截一个几何体.8、D【解析】

解:因为AB是⊙O的直径,所以∠ACB=90°,又⊙O的直径AB垂直于弦CD,,所以在Rt△AEC中,∠A=30°,又AC=3,所以CE=AB=,所以CD=2CE=3,故选D.【点睛】本题考查圆的基本性质;垂经定理及解直角三角形,综合性较强,难度不大.9、B【解析】

解:∵抛物线与x轴有2个交点,∴b2﹣4ac>0,所以①正确;∵抛物线的对称轴为直线x=1,而点(﹣1,0)关于直线x=1的对称点的坐标为(3,0),∴方程ax2+bx+c=0的两个根是x1=﹣1,x2=3,所以②正确;∵x=﹣=1,即b=﹣2a,而x=﹣1时,y=0,即a﹣b+c=0,∴a+2a+c=0,所以③错误;∵抛物线与x轴的两点坐标为(﹣1,0),(3,0),∴当﹣1<x<3时,y>0,所以④错误;∵抛物线的对称轴为直线x=1,∴当x<1时,y随x增大而增大,所以⑤正确.故选:B.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.10、B【解析】

直接利用立方根的定义化简得出答案.【详解】因为(-1)3=-1,=﹣1.故选:B.【点睛】此题主要考查了立方根,正确把握立方根的定义是解题关键.,二、填空题(本大题共6个小题,每小题3分,共18分)11、7秒或25秒.【解析】考点:勾股定理;等腰三角形的性质.专题:动点型;分类讨论.分析:根据等腰三角形三线合一性质可得到BD的长,由勾股定理可求得AD的长,再分两种情况进行分析:①PA⊥AC②PA⊥AB,从而可得到运动的时间.解答:解:如图,作AD⊥BC,交BC于点D,∵BC=8cm,∴BD=CD=12∴AD=AB分两种情况:当点P运动t秒后有PA⊥AC时,∵AP2=PD2+AD2=PC2-AC2,∴PD2+AD2=PC2-AC2,∴PD2+32=(PD+4)2-52∴PD=2.25,∴BP=4-2.25=1.75=0.25t,∴t=7秒,当点P运动t秒后有PA⊥AB时,同理可证得PD=2.25,∴BP=4+2.25=6.25=0.25t,∴t=25秒,∴点P运动的时间为7秒或25秒.点评:本题利用了等腰三角形的性质和勾股定理求解.12、【解析】分析:依据等式的基本性质依次移项、合并同类项、系数化为1即可得出答案.详解:移项,得:ax﹣x=1,合并同类项,得:(a﹣1)x=1.∵a≠1,∴a﹣1≠0,方程两边都除以a﹣1,得:x=.故答案为x=.点睛:本题主要考查解一元一次方程的能力,熟练掌握等式的基本性质及解一元一次方程的基本步骤是解题的关键.13、y(2x+3y)(2x-3y)【解析】

直接提取公因式y,再利用平方差公式分解因式即可.【详解】4x2y﹣9y3=y(4x2-9y2=x(2x+3y)(2x-3y).【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键.14、【解析】分析:根据“向量运算”的三角形法则进行计算即可.详解:如下图所示,由向量运算的三角形法则可得:==.故答案为.点睛:理解向量运算的三角形法则是正确解答本题的关键.15、【解析】分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.详解:掷一枚质地均匀的骰子,掷得的点数可能是1、2、3、4、5、6中的任意一个数,共有六种可能,其中4、6是合数,所以概率为=.故答案为.点睛:本题主要考查概率的求法,用到的知识点为:概率=所求情况数与总情况数之比.16、【解析】分析:不等式的解集就是在x下方,直线在直线上方时x的取值范围.由图象可知,此时.三、解答题(共8题,共72分)17、(1)0.3,45;(2);(3)【解析】

(1)根据频数的和为样本容量,频率的和为1,可直接求解;(2)根据频率可得到百分比,乘以360°即可;(3)列出相应的可能性表格,找到所发生的所有可能和符合条件的可能求概率即可.【详解】(1)a=0.3,b=45(2)360°×0.3=108°(3)列关系表格为:由表格可知,满足题意的概率为:.考点:1、频数分布表,2、扇形统计图,3、概率18、(1)a=,k=3,B(-,-2)(2)﹣≤x<0或x≥3;(3)(0,)或(0,0)【解析】

1)过A作AE⊥x轴,交x轴于点E,在Rt△AOE中,根据tan∠AOC的值,设AE=x,得到OE=3x,再由OA的长,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出A坐标,将A坐标代入一次函数解析式求出a的值,代入反比例解析式求出k的值,联立一次函数与反比例函数解析式求出B的坐标;(2)由A与B交点横坐标,根据函数图象确定出所求不等式的解集即可;(3)显然P与O重合时,满足△PDC与△ODC相似;当PC⊥CD,即∠PCD=时,满足三角形PDC与三角形CDO相等,利用同角的余角相等得到一对角相等,再由一对直角相等得到三角形PCO与三角形CDO相似,由相似得比例,根据OD,OC的长求出OP的长,即可确定出P的坐标.【详解】解:(1)过A作AE⊥x轴,交x轴于点E,在Rt△AOE中,OA=,tan∠AOC=,设AE=x,则OE=3x,根据勾股定理得:OA2=OE2+AE2,即10=9x2+x2,解得:x=1或x=﹣1(舍去),∴OE=3,AE=1,即A(3,1),将A坐标代入一次函数y=ax﹣1中,得:1=3a﹣1,即a=,将A坐标代入反比例解析式得:1=,即k=3,联立一次函数与反比例解析式得:,消去y得:x﹣1=,解得:x=﹣或x=3,将x=﹣代入得:y=﹣1﹣1=﹣2,即B(﹣,﹣2);(2)由A(3,1),B(﹣,﹣2),根据图象得:不等式x﹣1≥的解集为﹣≤x<0或x≥3;(3)显然P与O重合时,△PDC∽△ODC;当PC⊥CD,即∠PCD=90°时,∠PCO+∠DCO=90°,∵∠PCD=∠COD=90°,∠PCD=∠CDO,∴△PDC∽△CDO,∵∠PCO+∠CPO=90°,∴∠DCO=∠CPO,∵∠POC=∠COD=90°,∴△PCO∽△CDO,∴=,对于一次函数解析式y=x﹣1,令x=0,得到y=﹣1;令y=0,得到x=,∴C(,0),D(0,﹣1),即OC=,OD=1,∴=,即OP=,此时P坐标为(0,),综上,满足题意P的坐标为(0,)或(0,0).【点睛】此题属于反比例函数综合题,涉及的知识有:待定系数法确定函数解析式,一次函数与反比例函数的交点问题,坐标与图形性质,勾股定理,锐角三角函数定义,相似三角形的判定与性质,利用了数形结合的思想,熟练运用数形结合思想是解题的关键.19、(1)a=,b=2;(2)BC=.【解析】试题分析:(1)首先利用反比例函数图象上点的坐标性质得出k的值,再得出A、D点坐标,进而求出a,b的值;(2)设A点的坐标为:(m,),则C点的坐标为:(m,0),得出tan∠ADF=,tan∠AEC=,进而求出m的值,即可得出答案.试题解析:(1)∵点B(2,2)在函数y=(x>0)的图象上,∴k=4,则y=,∵BD⊥y轴,∴D点的坐标为:(0,2),OD=2,∵AC⊥x轴,AC=OD,∴AC=3,即A点的纵坐标为:3,∵点A在y=的图象上,∴A点的坐标为:(,3),∵一次函数y=ax+b的图象经过点A、D,∴,解得:,b=2;(2)设A点的坐标为:(m,),则C点的坐标为:(m,0),∵BD∥CE,且BC∥DE,∴四边形BCED为平行四边形,∴CE=BD=2,∵BD∥CE,∴∠ADF=∠AEC,∴在Rt△AFD中,tan∠ADF=,在Rt△ACE中,tan∠AEC=,∴=,解得:m=1,∴C点的坐标为:(1,0),则BC=.考点:反比例函数与一次函数的交点问题.20、(1)a=0.24,b=2,c=0.04;(2)600人;(3)人.【解析】

(1)利用50≤x<60的频数和频率,根据公式:频率=频数÷总数先计算出样本总人数,再分别计算出a,b,c的值;(2)先计算出竞赛分数不低于70分的频率,根据样本估计总体的思想,计算出1000名学生中竞赛成绩不低于70分的人数;(3)列树形图或列出表格,得到要求的所有情况和2名同学来自一组的情况,利用求概率公式计算出概率.【详解】解:(1)样本人数为:8÷0.16=50(名)a=12÷50=0.24,70≤x<80的人数为:50×0.5=25(名)b=50﹣8﹣12﹣25﹣3=2(名)c=2÷50=0.04所以a=0.24,b=2,c=0.04;(2)在选取的样本中,竞赛分数不低于70分的频率是0.5+0.06+0.04=0.6,根据样本估计总体的思想,有:1000×0.6=600(人)∴这1000名学生中有600人的竞赛成绩不低于70分;(3)成绩是80分以上的同学共有5人,其中第4组有3人,不妨记为甲,乙,丙,第5组有2人,不妨记作A,B从竞赛成绩是80分以上(含80分)的同学中随机抽取两名同学,情形如树形图所示,共有20种情况:抽取两名同学在同一组的有:甲乙,甲丙,乙甲,乙丙,丙甲,丙乙,AB,BA共8种情况,∴抽取的2名同学来自同一组的概率P==【点睛】本题考查了频数、频率、总数间关系及用列表法或树形图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树形图法适合两步或两步以上完成的事件;概率=所求情况数与总情况数之比.21、(1)﹣2≤x<2;(2)x=.【解析】

(1)先求出不等式组中每个不等式的解集,再求出不等式组的解集即可;(2)先把分式方程转化成整式方程,求出整式方程的解,再进行检验即可.【详解】(1),∵解不等式①得:x<2,解不等式②得:x≥﹣2,∴不等式组的解集为﹣2≤x<2;(2)方程两边都乘以(2x﹣1)(x﹣2)得2x(x﹣2)+x(2x﹣1)=2(x﹣2)(2x﹣1),解得:x=,检验:把x=代入(2x﹣1)(x﹣2)≠0,所以x=是原方程的解,即原方程的解是x=.【点睛】本题考查了解一元一次不等式组和解分式方程,根据不等式的解集找出不等式组的解集是解(1)的关键,能把分式方程转化成整式方程是解(2)的关键.22、木竿PQ的长度为3.35米.【解析】

过N点作ND⊥PQ于D,则四边形DPMN为矩形,根据矩形的性质得出DP,DN的长,然后根据同一时刻物高与影长成正比求出QD的长,即可得出PQ的长.试题解析:【详解】解:过N点作ND⊥PQ于D,则四边形DPMN为矩形,∴DN=PM=1.8m,DP=MN=1.1m,∴,∴QD==2.25,∴PQ=QD+DP=2.25+1.1=3.35(m).答:木竿PQ的长度为3.35米.【点睛】本题考查了相似三角形的应用,作出辅助线,根据同一时刻物高与影长成正比列出比例式是解决此题的关键.23、(1)该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论