2024届福建省福州市闽清县重点中学中考数学押题卷含解析_第1页
2024届福建省福州市闽清县重点中学中考数学押题卷含解析_第2页
2024届福建省福州市闽清县重点中学中考数学押题卷含解析_第3页
2024届福建省福州市闽清县重点中学中考数学押题卷含解析_第4页
2024届福建省福州市闽清县重点中学中考数学押题卷含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届福建省福州市闽清县重点中学中考数学押题卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.方程的解为()A.x=4 B.x=﹣3 C.x=6 D.此方程无解2.已知是二元一次方程组的解,则的算术平方根为()A.±2 B. C.2 D.43.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x件才能按时交货,则x应满足的方程为()A. B.C. D.4.下列运算正确的是()A.3a2﹣2a2=1 B.a2•a3=a6 C.(a﹣b)2=a2﹣b2 D.(a+b)2=a2+2ab+b25.如图,D是等边△ABC边AD上的一点,且AD:DB=1:2,现将△ABC折叠,使点C与D重合,折痕为EF,点E、F分别在AC、BC上,则CE:CF=()A. B. C. D.6.设a,b是常数,不等式的解集为,则关于x的不等式的解集是()A. B. C. D.7.在数轴上表示不等式2(1﹣x)<4的解集,正确的是()A. B.C. D.8.如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是()A.2 B. C. D.29.下列汽车标志中,不是轴对称图形的是()A. B. C. D.10.用6个相同的小正方体搭成一个几何体,若它的俯视图如图所示,则它的主视图不可能是()A. B. C. D.11.如图,四边形ABCD中,AB=CD,AD∥BC,以点B为圆心,BA为半径的圆弧与BC交于点E,四边形AECD是平行四边形,AB=3,则的弧长为()A. B.π C. D.312.实数a在数轴上的位置如图所示,则下列说法不正确的是()A.a的相反数大于2B.a的相反数是2C.|a|>2D.2a<0二、填空题:(本大题共6个小题,每小题4分,共24分.)13.与是位似图形,且对应面积比为4:9,则与的位似比为______.14.如图,一艘海轮位于灯塔P的北偏东方向60°,距离灯塔为4海里的点A处,如果海轮沿正南方向航行到灯塔的正东位置,海轮航行的距离AB长_____海里.15.《九章算术》是中国传统数学最重要的著作,在“勾股”章中有这样一个问题:“今有邑方二百步,各中开门,出东门十五步有木,问:出南门几步而见木?”用今天的话说,大意是:如图,是一座边长为200步(“步”是古代的长度单位)的正方形小城,东门位于的中点,南门位于的中点,出东门15步的处有一树木,求出南门多少步恰好看到位于处的树木(即点在直线上)?请你计算的长为__________步.16.在平面直角坐标系中,点A,B的坐标分别为(m,7),(3m﹣1,7),若线段AB与直线y=﹣2x﹣1相交,则m的取值范围为__.17.如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=.下列结论:①△APD≌△AEB;②点B到直线AE的距离为;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正确结论的序号是.18.如图,在梯形中,,,点、分别是边、的中点.设,,那么向量用向量表示是________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.求每件甲种、乙种玩具的进价分别是多少元?商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?20.(6分)一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.求y关于x的函数关系式;(不需要写定义域)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?21.(6分)如图,AB是⊙O直径,BC⊥AB于点B,点C是射线BC上任意一点,过点C作CD切⊙O于点D,连接AD.求证:BC=CD;若∠C=60°,BC=3,求AD的长.22.(8分)如图,一次函数y=ax+b的图象与反比例函数y=kx的图象交于C,D两点,与x,y轴交于B,A两点,且tan∠ABO=12,OB=4,OE=2(1)求一次函数的解析式和反比例函数的解析式;(2)求△OCD的面积;(3)根据图象直接写出一次函数的值大于反比例函数的值时,自变量x的取值范围.23.(8分)2018年10月23日,港珠澳大桥正式开通,成为横亘在伶仃洋上的一道靓丽的风景线.大桥主体工程隧道的东、西两端各设置了一个海中人工岛,来衔接桥梁和海地隧道,西人工岛上的点和东人工岛上的点间的距离约为5.6千米,点是与西人工岛相连的大桥上的一点,,,在一条直线上.如图,一艘观光船沿与大桥段垂直的方向航行,到达点时观测两个人工岛,分别测得,与观光船航向的夹角,,求此时观光船到大桥段的距离的长(参考数据:,,,,,).24.(10分)如图,在中,,的垂直平分线交于,交于,射线上,并且.()求证:;()当的大小满足什么条件时,四边形是菱形?请回答并证明你的结论.25.(10分)某中学开展“汉字听写大赛”活动,为了解学生的参与情况,在该校随机抽取了四个班级学生进行调查,将收集的数据整理并绘制成图1和图2两幅尚不完整的统计图,请根据图中的信息,解答下列问题:(1)这四个班参与大赛的学生共__________人;(2)请你补全两幅统计图;(3)求图1中甲班所对应的扇形圆心角的度数;(4)若四个班级的学生总数是160人,全校共2000人,请你估计全校的学生中参与这次活动的大约有多少人.26.(12分)如图,在中,,点在上运动,点在上,始终保持与相等,的垂直平分线交于点,交于,判断与的位置关系,并说明理由;若,,,求线段的长.27.(12分)如图,抛物线y=ax2+bx+c与x轴的交点分别为A(﹣6,0)和点B(4,0),与y轴的交点为C(0,3).(1)求抛物线的解析式;(2)点P是线段OA上一动点(不与点A重合),过P作平行于y轴的直线与AC交于点Q,点D、M在线段AB上,点N在线段AC上.①是否同时存在点D和点P,使得△APQ和△CDO全等,若存在,求点D的坐标,若不存在,请说明理由;②若∠DCB=∠CDB,CD是MN的垂直平分线,求点M的坐标.

参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解析】

先把分式方程化为整式方程,求出x的值,代入最简公分母进行检验.【详解】方程两边同时乘以x-2得到1-(x-2)=﹣3,解得x=6.将x=6代入x-2得6-2=4,∴x=6就是原方程的解.故选C【点睛】本题考查的是解分式方程,熟知解分式方程的基本步骤是解答此题的关键.2、C【解析】二元一次方程组的解和解二元一次方程组,求代数式的值,算术平方根.【分析】∵是二元一次方程组的解,∴,解得.∴.即的算术平方根为1.故选C.3、D【解析】

因客户的要求每天的工作效率应该为:(48+x)件,所用的时间为:,根据“因客户要求提前5天交货”,用原有完成时间减去提前完成时间,可以列出方程:.故选D.4、D【解析】

根据合并同类项法则,可知3a2﹣2a2=a2,故不正确;根据同底数幂相乘,可知a2•a3=a5,故不正确;根据完全平方公式,可知(a﹣b)2=a2﹣2ab+b2,故不正确;根据完全平方公式,可知(a+b)2=a2+2ab+b2,正确.故选D.【详解】请在此输入详解!5、B【解析】

解:由折叠的性质可得,∠EDF=∠C=60º,CE=DE,CF=DF再由∠BDF+∠ADE=∠BDF+∠BFD=120º可得∠ADE=∠BFD,又因∠A=∠B=60º,根据两角对应相等的两三角形相似可得△AED∽△BDF所以,设AD=a,BD=2a,AB=BC=CA=3a,再设CE==DE=x,CF==DF=y,则AE=3a-x,BF=3a-y,所以整理可得ay=3ax-xy,2ax=3ay-xy,即xy=3ax-ay①,xy=3ay-2ax②;把①代入②可得3ax-ay=3ay-2ax,所以5ax=4ay,,即故选B.【点睛】本题考查相似三角形的判定及性质.6、C【解析】

根据不等式的解集为x<即可判断a,b的符号,则根据a,b的符号,即可解不等式bx-a<0【详解】解不等式,移项得:∵解集为x<∴,且a<0∴b=-5a>0,解不等式,移项得:bx>a两边同时除以b得:x>,即x>-故选C【点睛】此题考查解一元一次不等式,掌握运算法则是解题关键7、A【解析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得不等式解集,然后得出在数轴上表示不等式的解集.2(1–x)<4去括号得:2﹣2x<4移项得:2x>﹣2,系数化为1得:x>﹣1,故选A.“点睛”本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.8、C【解析】

由OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,易得△OCP是等腰三角形,∠COP=30°,又由含30°角的直角三角形的性质,即可求得PE的值,继而求得OP的长,然后由直角三角形斜边上的中线等于斜边的一半,即可求得DM的长.【详解】解:∵OP平分∠AOB,∠AOB=60°,∴∠AOP=∠COP=30°,∵CP∥OA,∴∠AOP=∠CPO,∴∠COP=∠CPO,∴OC=CP=2,∵∠PCE=∠AOB=60°,PE⊥OB,∴∠CPE=30°,∴CE=CP=1,∴PE=,∴OP=2PE=2,∵PD⊥OA,点M是OP的中点,∴DM=OP=.故选C.考点:角平分线的性质;含30度角的直角三角形;直角三角形斜边上的中线;勾股定理.9、C【解析】

根据轴对称图形的概念求解.【详解】A、是轴对称图形,故错误;B、是轴对称图形,故错误;C、不是轴对称图形,故正确;D、是轴对称图形,故错误.故选C.【点睛】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.10、D【解析】分析:根据主视图和俯视图之间的关系可以得出答案.详解:∵主视图和俯视图的长要相等,∴只有D选项中的长和俯视图不相等,故选D.点睛:本题主要考查的就是三视图的画法,属于基础题型.三视图的画法为:主视图和俯视图的长要相等;主视图和左视图的高要相等;左视图和俯视图的宽要相等.11、B【解析】∵四边形AECD是平行四边形,

∴AE=CD,

∵AB=BE=CD=3,

∴AB=BE=AE,

∴△ABE是等边三角形,

∴∠B=60°,∴的弧长=.故选B.12、B【解析】试题分析:由数轴可知,a<-2,A、a的相反数>2,故本选项正确,不符合题意;B、a的相反数≠2,故本选项错误,符合题意;C、a的绝对值>2,故本选项正确,不符合题意;D、2a<0,故本选项正确,不符合题意.故选B.考点:实数与数轴.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、2:1【解析】

由相似三角形的面积比等于相似比的平方,即可求得与的位似比.【详解】解与是位似图形,且对应面积比为4:9,与的相似比为2:1,故答案为:2:1.【点睛】本题考查了位似的相关知识,位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方.14、1【解析】分析:首先由方向角的定义及已知条件得出∠NPA=60°,AP=4海里,∠ABP=90°,再由AB∥NP,根据平行线的性质得出∠A=∠NPA=60°.然后解Rt△ABP,得出AB=AP•cos∠A=1海里.详解:如图,由题意可知∠NPA=60°,AP=4海里,∠ABP=90°.∵AB∥NP,∴∠A=∠NPA=60°.在Rt△ABP中,∵∠ABP=90°,∠A=60°,AP=4海里,∴AB=AP•cos∠A=4×cos60°=4×=1海里.故答案为1.点睛:本题考查了解直角三角形的应用-方向角问题,平行线的性质,三角函数的定义,正确理解方向角的定义是解题的关键.15、【解析】分析:由正方形的性质得到∠EDG=90°,从而∠KDC+∠HDA=90°,再由∠C+∠KDC=90°,得到∠C=∠HDA,即有△CKD∽△DHA,由相似三角形的性质得到CK:KD=HD:HA,求解即可得到结论.详解:∵DEFG是正方形,∴∠EDG=90°,∴∠KDC+∠HDA=90°.∵∠C+∠KDC=90°,∴∠C=∠HDA.∵∠CKD=∠DHA=90°,∴△CKD∽△DHA,∴CK:KD=HD:HA,∴CK:100=100:15,解得:CK=.故答案为:.点睛:本题考查了相似三角形的应用.解题的关键是证明△CKD∽△DHA.16、﹣4≤m≤﹣1【解析】

先求出直线y=7与直线y=﹣2x﹣1的交点为(﹣4,7),再分类讨论:当点B在点A的右侧,则m≤﹣4≤3m﹣1,当点B在点A的左侧,则3m﹣1≤﹣4≤m,然后分别解关于m的不等式组即可.【详解】解:当y=7时,﹣2x﹣1=7,解得x=﹣4,所以直线y=7与直线y=﹣2x﹣1的交点为(﹣4,7),当点B在点A的右侧,则m≤﹣4≤3m﹣1,无解;当点B在点A的左侧,则3m﹣1≤﹣4≤m,解得﹣4≤m≤﹣1,所以m的取值范围为﹣4≤m≤﹣1,故答案为﹣4≤m≤﹣1.【点睛】本题考查了一次函数图象上点的坐标特征,根据直线y=﹣2x﹣1与线段AB有公共点找出关于m的一元一次不等式组是解题的关键.17、①③⑤【解析】

①利用同角的余角相等,易得∠EAB=∠PAD,再结合已知条件利用SAS可证两三角形全等;

②过B作BF⊥AE,交AE的延长线于F,利用③中的∠BEP=90°,利用勾股定理可求BE,结合△AEP是等腰直角三角形,可证△BEF是等腰直角三角形,再利用勾股定理可求EF、BF;

③利用①中的全等,可得∠APD=∠AEB,结合三角形的外角的性质,易得∠BEP=90°,即可证;

④连接BD,求出△ABD的面积,然后减去△BDP的面积即可;

⑤在Rt△ABF中,利用勾股定理可求AB2,即是正方形的面积.【详解】①∵∠EAB+∠BAP=90°,∠PAD+∠BAP=90°,

∴∠EAB=∠PAD,

又∵AE=AP,AB=AD,

∵在△APD和△AEB中,

∴△APD≌△AEB(SAS);

故此选项成立;

③∵△APD≌△AEB,

∴∠APD=∠AEB,

∵∠AEB=∠AEP+∠BEP,∠APD=∠AEP+∠PAE,

∴∠BEP=∠PAE=90°,

∴EB⊥ED;

故此选项成立;

②过B作BF⊥AE,交AE的延长线于F,

∵AE=AP,∠EAP=90°,

∴∠AEP=∠APE=45°,

又∵③中EB⊥ED,BF⊥AF,

∴∠FEB=∠FBE=45°,

又∵BE=

=

=

∴BF=EF=

故此选项不正确;

④如图,连接BD,在Rt△AEP中,

∵AE=AP=1,

∴EP=

又∵PB=

∴BE=

∵△APD≌△AEB,

∴PD=BE=

∴S

△ABP+S

△ADP=S

△ABD-S

△BDP=

S

正方形ABCD-

×DP×BE=

×(4+

)-

×

×

=

+

故此选项不正确.

⑤∵EF=BF=

,AE=1,

∴在Rt△ABF中,AB

2=(AE+EF)

2+BF

2=4+

∴S

正方形ABCD=AB

2=4+

故此选项正确.

故答案为①③⑤.【点睛】本题考查了全等三角形的判定和性质的运用、正方形的性质的运用、正方形和三角形的面积公式的运用、勾股定理的运用等知识.18、【解析】分析:根据梯形的中位线等于上底与下底和的一半表示出EF,然后根据向量的三角形法则解答即可.详解:∵点E、F分别是边AB、CD的中点,∴EF是梯形ABCD的中位线,FC=DC,∴EF=(AD+BC).∵BC=3AD,∴EF=(AD+3AD)=2AD,由三角形法则得,=+=2+===2+.故答案为:2+.点睛:本题考查了平面向量,平面向量的问题,熟练掌握三角形法则和平行四边形法则是解题的关键,本题还考查了梯形的中位线等于上底与下底和的一半.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)甲,乙两种玩具分别是15元/件,1元/件;(2)共有四种方案.【解析】

(1)设甲种玩具进价x元/件,则乙种玩具进价为(40﹣x)元/件,根据已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同可列方程求解.(2)设购进甲种玩具y件,则购进乙种玩具(48﹣y)件,根据甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,可列出不等式组求解.【详解】解:设甲种玩具进价x元/件,则乙种玩具进价为(40﹣x)元/件,x=15,经检验x=15是原方程的解.∴40﹣x=1.甲,乙两种玩具分别是15元/件,1元/件;(2)设购进甲种玩具y件,则购进乙种玩具(48﹣y)件,,解得20≤y<2.因为y是整数,甲种玩具的件数少于乙种玩具的件数,∴y取20,21,22,23,共有4种方案.考点:分式方程的应用;一元一次不等式组的应用.20、(1)该一次函数解析式为y=﹣110【解析】【分析】(1)根据函数图象中点的坐标利用待定系数法求出一次函数解析式;(2)根据一次函数图象上点的坐标特征即可求出剩余油量为8升时行驶的路程,即可求得答案.【详解】(1)设该一次函数解析式为y=kx+b,将(150,45)、(0,1)代入y=kx+b中,得150k+b=45b=60,解得:k=-∴该一次函数解析式为y=﹣110(2)当y=﹣110解得x=520,即行驶520千米时,油箱中的剩余油量为8升.530﹣520=10千米,油箱中的剩余油量为8升时,距离加油站10千米,∴在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.【点睛】本题考查了一次函数的应用,熟练掌握待定系数法,弄清题意是解题的关键.21、(1)证明见解析;(2).【解析】

(1)根据切线的判定定理得到BC是⊙O的切线,再利用切线长定理证明即可;(2)根据含30°的直角三角形的性质、正切的定义计算即可.【详解】(1)∵AB是⊙O直径,BC⊥AB,∴BC是⊙O的切线,∵CD切⊙O于点D,∴BC=CD;(2)连接BD,∵BC=CD,∠C=60°,∴△BCD是等边三角形,∴BD=BC=3,∠CBD=60°,∴∠ABD=30°,∵AB是⊙O直径,∴∠ADB=90°,∴AD=BD•tan∠ABD=.【点睛】本题考查了切线的性质、直角三角形的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.22、(1)y=-12x+2,y=-6x【解析】试题分析:(1)根据已知条件求出A、B、C点坐标,用待定系数法求出直线AB和反比例函数的解析式;(2)联立一次函数的解析式和反比例的函数解析式可得交点D的坐标,从而根据三角形面积公式求解;(3)根据函数的图象和交点坐标即可求解.试题解析:解:(1)∵OB=4,OE=2,∴BE=2+4=1.∵CE⊥x轴于点E,tan∠ABO=OAOB=CEBE=12,∴OA=2,CE=3,∴点A的坐标为(0,2)、点B∵一次函数y=ax+b的图象与x,y轴交于B,A两点,∴4a+b=0b=2,解得:a=-故直线AB的解析式为y=-1∵反比例函数y=kx的图象过C,∴3=k-2,∴k(2)联立反比例函数的解析式和直线AB的解析式可得:y=-12x+2y=-6x,可得交点D的坐标为(1,﹣1),则△(3)由图象得,一次函数的值大于反比例函数的值时x的取值范围:x<﹣2或0<x<1.点睛:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.23、5.6千米【解析】

设PD的长为x千米,DA的长为y千米,在Rt△PAD中利用正切的定义得到tan18°=,即y=0.33x,同样在Rt△PDB中得到y+5.6=1.33x,所以0.33x+5.6=1.33x,然后解方程求出x即可.【详解】设PD的长为x千米,DA的长为y千米,在Rt△PAD中,tan∠DPA=,即tan18°=,∴y=0.33x,在Rt△PDB中,tan∠DPB=,即tan53°=,∴y+5.6=1.33x,∴0.33x+5.6=1.33x,解得x=5.6,答:此时观光船到大桥AC段的距离PD的长为5.6千米.【点睛】本题考查了解直角三角形的应用:根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.24、(1)见解析;(2)见解析【解析】

(1)求出EF∥AC,根据EF=AC,利用平行四边形的判定推出四边形ACEF是平行四边形即可;(2)求出CE=AB,AC=AB,推出AC=CE,根据菱形的判定推出即可.【详解】(1)证明:∵∠ACB=90°,DE是BC的垂直平分线,∴∠BDE=∠ACB=90°,∴EF∥AC,∵EF=AC,∴四边形ACEF是平行四边形,∴AF=CE;(2)当∠B=30°时,四边形ACEF是菱形,证明:∵∠B=30°,∠ACB=90°,∴AC=AB,∵DE是BC的垂直平分线,∴BD=DC,∵DE∥AC,∴BE=AE,∵∠ACB=90°,∴CE=AB,∴CE=AC,∵四边形ACEF是平行四边形,∴四边形ACEF是菱形,即当∠B=30°时,四边形ACEF是菱形.【点睛】本题考查了菱形的判定平行四边形的判定线段垂直平分线,含30度角的直角三角形性质,直角三角形斜边上中线性质等知识点的应用综合性比较强,有一定的难度.25、(1)100;(2)见解析;(3)108°;(4)1250.【解析】试题分析:(1)根据乙班参赛30人,所占比为20%,即可求出这四个班总人数;(2)根据丁班参赛35人,总人数是100,即可求出丁班所占的百分比,再用整体1减去其它所占的百分比,即可得出丙所占的百分比,再乘以参赛得总人数,即可得出丙班参

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论