版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省温州地区2024年中考数学模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1.如图,在平面直角坐标系中,半径为2的圆P的圆心P的坐标为(﹣3,0),将圆P沿x轴的正方向平移,使得圆P与y轴相切,则平移的距离为()A.1 B.3 C.5 D.1或52.如图,在△ABC中,∠C=90°,点D在AC上,DE∥AB,若∠CDE=165°,则∠B的度数为()A.15° B.55° C.65° D.75°3.1﹣的相反数是()A.1﹣ B.﹣1 C. D.﹣14.已知二次函数y=x2+bx+c的图象与x轴相交于A、B两点,其顶点为P,若S△APB=1,则b与c满足的关系是()A.b2-4c+1=0 B.b2-4c-1=0 C.b2-4c+4=0 D.b2-4c-4=05.“山西八分钟,惊艳全世界”.2019年2月25日下午,在外交部蓝厅隆重举行山西全球推介活动.山西经济结构从“一煤独大”向多元支撑转变,三年累计退出煤炭过剩产能8800余万吨,煤层气产量突破56亿立方米.数据56亿用科学记数法可表示为()A.56×108 B.5.6×108 C.5.6×109 D.0.56×10106.下列方程中,两根之和为2的是()A.x2+2x﹣3=0 B.x2﹣2x﹣3=0 C.x2﹣2x+3=0 D.4x2﹣2x﹣3=07.的相反数是A.4 B. C. D.8.估计介于()A.0与1之间 B.1与2之间 C.2与3之间 D.3与4之间9.如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,若CD=2,AB=8,则△ABD的面积是()A.6 B.8 C.10 D.1210.已知正方形ABCD的边长为4cm,动点P从A出发,沿AD边以1cm/s的速度运动,动点Q从B出发,沿BC,CD边以2cm/s的速度运动,点P,Q同时出发,运动到点D均停止运动,设运动时间为x(秒),△BPQ的面积为y(cm2),则y与x之间的函数图象大致是()A. B. C. D.二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,平面直角坐标系中,经过点B(﹣4,0)的直线y=kx+b与直线y=mx+2相交于点A(,-1),则不等式mx+2<kx+b<0的解集为____.12.方程=1的解是___.13.如图,在ABC中,AB=AC=6,∠BAC=90°,点D、E为BC边上的两点,分别沿AD、AE折叠,B、C两点重合于点F,若DE=5,则AD的长为_____.14.据统计,今年无锡鼋头渚“樱花节”活动期间入园赏樱人数约803万人次,用科学记数法可表示为_____人次.15.一次函数y=(k﹣3)x﹣k+2的图象经过第一、三、四象限.则k的取值范围是_____.16.如图,矩形ABCD,AB=2,BC=1,将矩形ABCD绕点A顺时针旋转90°得矩形AEFG,连接CG、EG,则∠CGE=________.三、解答题(共8题,共72分)17.(8分)某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?18.(8分)如图:求作一点P,使,并且使点P到的两边的距离相等.19.(8分)(1)(问题发现)小明遇到这样一个问题:如图1,△ABC是等边三角形,点D为BC的中点,且满足∠ADE=60°,DE交等边三角形外角平分线CE所在直线于点E,试探究AD与DE的数量关系.(1)小明发现,过点D作DF//AC,交AC于点F,通过构造全等三角形,经过推理论证,能够使问题得到解决,请直接写出AD与DE的数量关系:;(2)(类比探究)如图2,当点D是线段BC上(除B,C外)任意一点时(其它条件不变),试猜想AD与DE之间的数量关系,并证明你的结论.(3)(拓展应用)当点D在线段BC的延长线上,且满足CD=BC(其它条件不变)时,请直接写出△ABC与△ADE的面积之比.20.(8分)文艺复兴时期,意大利艺术大师达.芬奇研究过用圆弧围成的部分图形的面积问题.已知正方形的边长是2,就能求出图中阴影部分的面积.证明:S矩形ABCD=S1+S2+S3=2,S4=,S5=,S6=+,S阴影=S1+S6=S1+S2+S3=.21.(8分)如图,抛物线y=﹣x2﹣x+4与x轴交于A,B两点(A在B的左侧),与y轴交于点C.(1)求点A,点B的坐标;(2)P为第二象限抛物线上的一个动点,求△ACP面积的最大值.22.(10分)计算:(﹣2018)0﹣4sin45°+﹣2﹣1.23.(12分)如图1,点和矩形的边都在直线上,以点为圆心,以24为半径作半圆,分别交直线于两点.已知:,,矩形自右向左在直线上平移,当点到达点时,矩形停止运动.在平移过程中,设矩形对角线与半圆的交点为(点为半圆上远离点的交点).如图2,若与半圆相切,求的值;如图3,当与半圆有两个交点时,求线段的取值范围;若线段的长为20,直接写出此时的值.24.(1)计算:|﹣3|+(+π)0﹣(﹣)﹣2﹣2cos60°;(2)先化简,再求值:()+,其中a=﹣2+.
参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】
分圆P在y轴的左侧与y轴相切、圆P在y轴的右侧与y轴相切两种情况,根据切线的判定定理解答.【详解】当圆P在y轴的左侧与y轴相切时,平移的距离为3-2=1,当圆P在y轴的右侧与y轴相切时,平移的距离为3+2=5,故选D.【点睛】本题考查的是切线的判定、坐标与图形的变化-平移问题,掌握切线的判定定理是解题的关键,解答时,注意分情况讨论思想的应用.2、D【解析】
根据邻补角定义可得∠ADE=15°,由平行线的性质可得∠A=∠ADE=15°,再根据三角形内角和定理即可求得∠B=75°.【详解】解:∵∠CDE=165°,∴∠ADE=15°,∵DE∥AB,∴∠A=∠ADE=15°,∴∠B=180°﹣∠C﹣∠A=180°﹣90°﹣15°=75°,故选D.【点睛】本题考查了平行线的性质、三角形内角和定理等,熟练掌握平行线的性质以及三角形内角和定理是解题的关键.3、B【解析】
根据相反数的的定义解答即可.【详解】根据a的相反数为-a即可得,1﹣的相反数是﹣1.故选B.【点睛】本题考查了相反数的定义,熟知相反数的定义是解决问题的关键.4、D【解析】
抛物线的顶点坐标为P(−,),设A、B两点的坐标为A(,0)、B(,0)则AB=,根据根与系数的关系把AB的长度用b、c表示,而S△APB=1,然后根据三角形的面积公式就可以建立关于b、c的等式.【详解】解:∵,∴AB==,∵若S△APB=1∴S△APB=×AB×=1,∴−××,∴,设=s,则,故s=2,∴=2,∴.故选D.【点睛】本题主要考查了抛物线与x轴的交点情况与判别式的关系、抛物线顶点坐标公式、三角形的面积公式等知识,综合性比较强.5、C【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于56亿有10位,所以可以确定n=10﹣1=1.【详解】56亿=56×108=5.6×101,故选C.【点睛】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.6、B【解析】
由根与系数的关系逐项判断各项方程的两根之和即可.【详解】在方程x2+2x-3=0中,两根之和等于-2,故A不符合题意;在方程x2-2x-3=0中,两根之和等于2,故B符合题意;在方程x2-2x+3=0中,△=(-2)2-4×3=-8<0,则该方程无实数根,故C不符合题意;在方程4x2-2x-3=0中,两根之和等于-,故D不符合题意,故选B.【点睛】本题主要考查根与系数的关系,掌握一元二次方程的两根之和等于-、两根之积等于是解题的关键.7、A【解析】
直接利用相反数的定义结合绝对值的定义分析得出答案.【详解】-1的相反数为1,则1的绝对值是1.故选A.【点睛】本题考查了绝对值和相反数,正确把握相关定义是解题的关键.8、C【解析】
解:∵,∴,即∴估计在2~3之间故选C.【点睛】本题考查估计无理数的大小.9、B【解析】分析:过点D作DE⊥AB于E,先求出CD的长,再根据角平分线上的点到角的两边的距离相等可得DE=CD=2,然后根据三角形的面积公式列式计算即可得解.详解:如图,过点D作DE⊥AB于E,∵AB=8,CD=2,∵AD是∠BAC的角平分线,∴DE=CD=2,∴△ABD的面积故选B.点睛:考查角平分线的性质,角平分线上的点到角两边的距离相等.10、B【解析】
根据题意,Q点分别在BC、CD上运动时,形成不同的三角形,分别用x表示即可.【详解】(1)当0≤x≤2时,BQ=2x当2≤x≤4时,如下图由上可知故选:B.【点睛】本题是双动点问题,解答时要注意讨论动点在临界两侧时形成的不同图形,并要根据图形列出函数关系式.二、填空题(本大题共6个小题,每小题3分,共18分)11、﹣4<x<﹣【解析】根据函数的图像,可知不等式mx+2<kx+b<0的解集就是y=mx+2在函数y=kx+b的下面,且它们的值小于0的解集是﹣4<x<﹣.故答案为﹣4<x<﹣.12、x=﹣4【解析】
分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】去分母得:3+2x=x﹣1,解得:x=﹣4,经检验x=﹣4是分式方程的解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.13、或【解析】
过点A作AG⊥BC,垂足为G,根据等腰直角三角形的性质可得AG=BG=CG=6,设BD=x,则DF=BD=x,EF=7-x,然后利用勾股定理可得到关于x的方程,从而求得DG的长,继而可求得AD的长.【详解】如图所示,过点A作AG⊥BC,垂足为G,∵AB=AC=6,∠BAC=90°,∴BC==12,∵AB=AC,AG⊥BC,∴AG=BG=CG=6,设BD=x,则EC=12-DE-BD=12-5-x=7-x,由翻折的性质可知:∠DFA=∠B=∠C=∠AFE=45°,DB=DF,EF=FC,∴DF=x,EF=7-x,在Rt△DEF中,DE2=DF2+EF2,即25=x2+(7-x)2,解得:x=3或x=4,当BD=3时,DG=3,AD=,当BD=4时,DG=2,AD=,∴AD的长为或,故答案为:或.【点睛】本题考查了翻折的性质、勾股定理的应用、等腰直角三角形的性质,正确添加辅助线,灵活运用勾股定理是解题的关键.14、8.03×106【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.803万=.15、k>3【解析】分析:根据函数图象所经过的象限列出不等式组通过解该不等式组可以求得k的取值范围.详解:∵一次函教y=(k−3)x−k+2的图象经过第一、三、四象限,∴解得,k>3.故答案是:k>3.点睛:此题主要考查了一次函数图象,一次函数的图象有四种情况:
①当时,函数的图象经过第一、二、三象限;
②当时,函数的图象经过第一、三、四象限;
③当时,函数的图象经过第一、二、四象限;
④当时,函数的图象经过第二、三、四象限.16、45°【解析】试题解析:如图,连接CE,∵AB=2,BC=1,∴DE=EF=1,CD=GF=2,在△CDE和△GFE中∴△CDE≌△GFE(SAS),∴CE=GE,∠CED=∠GEF,故答案为三、解答题(共8题,共72分)17、(1)甲,乙两种玩具分别是15元/件,1元/件;(2)4.【解析】试题分析:(1)设甲种玩具进价x元/件,则乙种玩具进价为(40﹣x)元/件,根据已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同可列方程求解.(2)设购进甲种玩具y件,则购进乙种玩具(48﹣y)件,根据甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,可列出不等式组求解.试题解析:设甲种玩具进价x元/件,则乙种玩具进价为(40﹣x)元/件,x=15,经检验x=15是原方程的解.∴40﹣x=1.甲,乙两种玩具分别是15元/件,1元/件;(2)设购进甲种玩具y件,则购进乙种玩具(48﹣y)件,,解得20≤y<2.因为y是整数,甲种玩具的件数少于乙种玩具的件数,∴y取20,21,22,23,共有4种方案.考点:分式方程的应用;一元一次不等式组的应用.18、见解析【解析】
利用角平分线的作法以及线段垂直平分线的作法分别得出进而求出其交点即可.【详解】如图所示:P点即为所求.【点睛】本题主要考查了复杂作图,熟练掌握角平分线以及线段垂直平分线的作法是解题的关键.19、(1)AD=DE;(2)AD=DE,证明见解析;(3).【解析】试题分析:本题难度中等.主要考查学生对探究例子中的信息进行归纳总结.并能够结合三角形的性质是解题关键.试题解析:(10分)(1)AD=DE.(2)AD=DE.证明:如图2,过点D作DF//AC,交AC于点F,∵△ABC是等边三角形,∴AB=BC,∠B=∠ACB=∠ABC=60°.又∵DF//AC,∴∠BDF=∠BFD=60°∴△BDF是等边三角形,BF=BD,∠BFD=60°,∴AF=CD,∠AFD=120°.∵EC是外角的平分线,∠DCE=120°=∠AFD.∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠FAD=60°+∠FAD.∵∠ADC=∠ADE+∠EDC=60°+∠EDC,∴∠FAD=∠EDC.∴△AFD≌△DCE(ASA),∴AD=DE;(3).考点:1.等边三角形探究题;2.全等三角形的判定与性质;3.等边三角形的判定与性质.20、S1,S3,S4,S5,1【解析】
利用图形的拼割,正方形的性质,寻找等面积的图形,即可解决问题.【详解】由题意:S矩形ABCD=S1+S1+S3=1,S4=S1,S5=S3,S6=S4+S5,S阴影面积=S1+S6=S1+S1+S3=1.故答案为S1,S3,S4,S5,1.【点睛】考查正方形的性质、矩形的性质、扇形的面积等知识,解题的关键是灵活运用所学知识解决问题.21、(1)A(﹣4,0),B(2,0);(2)△ACP最大面积是4.【解析】
(1)令y=0,得到关于x的一元二次方程﹣x2﹣x+4=0,解此方程即可求得结果;(2)先求出直线AC解析式,再作PD⊥AO交AC于D,设P(t,﹣t2﹣t+4),可表示出D点坐标,于是线段PD可用含t的代数式表示,所以S△ACP=PD×OA=PD×4=2PD,可得S△ACP关于t的函数关系式,继而可求出△ACP面积的最大值.【详解】(1)解:设y=0,则0=﹣x2﹣x+4∴x1=﹣4,x2=2∴A(﹣4,0),B(2,0)(2)作PD⊥AO交AC于D设AC解析式y=kx+b∴解得:∴AC解析式为y=x+4.设P(t,﹣t2﹣t+4)则D(t,t+4)∴PD=(﹣t2﹣t+4)﹣(t+4)=﹣t2﹣2t=﹣(t+2)2+2∴S△ACP=PD×4=﹣(t+2)2+4∴当t=﹣2时,△A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 八年级语文下册全部古诗词+诗人介绍
- 2024年长途搬家服务全面合作协议
- 2024年规范化演出用地租赁合同范例版
- 2024年离婚协议参考格式:子女抚养权与财产划分3篇
- 2024年跨境金融服务合作框架合同
- 2024影视明星与经纪公司之间的经纪代理合同
- 2024新能源汽车充电桩建设和运营协议
- 2024幼儿园食堂特色菜品研发与承包经营协议3篇
- 2024设计咨询服务合同书(二零二四年度医疗设备)3篇
- 2024年综合监控系统采购及施工协议版
- 2024-2025学年重庆市北碚区三上数学期末监测试题含解析
- 大宗贸易居间协议2024年
- DL∕T 5499-2015 换流站二次系统设计技术规程
- 2024年安徽省高考政治试卷(真题+答案)
- 中外合作办学规划方案
- 增强现实技术在艺术教育中的应用
- 教师法及与教师有关的法律法规培训
- 降温池施工方案
- 混凝土预制块护坡施工方案
- 2024年决战行测5000题言语理解与表达一套
- 2024-2034年中国玻塑混合镜头行业市场现状分析及竞争格局与投资发展研究报告
评论
0/150
提交评论