寿险精算学课件:多重损因模型_第1页
寿险精算学课件:多重损因模型_第2页
寿险精算学课件:多重损因模型_第3页
寿险精算学课件:多重损因模型_第4页
寿险精算学课件:多重损因模型_第5页
已阅读5页,还剩51页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

多重损因模型本章中英文单词对照多重损因模型随机残存组确定性残存组绝对损失率MultipledecrementmodelsRandomsurvivorshipgroupDeterministicsurvivorshipgroupAbsoluterateofdecrement第八章多重损因残存组确定多重损因模型多重损因表的构造多重损因模型构造使用背景如果被保险人投保寿险且在缴费期间死亡,那就意味着他将获得保险赔付而且不再缴纳保险费了。就此人而言,保险人遭受到了损失。在前面七章中我们都是讨论在以死亡为唯一损失变量时,各种保险要素的确定。在实际中,除了死亡这个损失变量,我们可能还会遇到其它的提前终止缴费的损失变量,比如,寿险中,被保险人退保;劳动力计划中,雇员辞职、残疾或者退休等,都会对单一考虑死亡因素时的缴纳——赔付之间的平衡构成影响。多重损因模型就是在这种背景下产生的。

一、多损失模型的构造两变量模型

多种损失模型的实质就是一个两变量模型。变量一是状况终止的时间,在寿险场合它可以表示为剩余寿命;变量二是状况终止的原因,这是一个离散随机变量,比如在寿险场合,我们可以令表示死亡,,表示退保。

相关函数联合密度函数边际分布函数事件的概率多重损因函数(一)

由原因j引起且损失发生在时间t之前的概率

由原因j引起的损失发生的概率

多重损因函数(二)的密度函数的分布函数

多重损因函数(三)由各种原因引起且损失发生在时间t之前的概率

损失不会发生在时间t之前的概率

多重损因函数(四)x+t时刻由原因j造成的损失效力

x+t时刻由所有原因造成的总损失效力

多重损因函数(五)给定损失时间t,J的条件概率函数

例8.1考虑2个损失原因的多重损因模型,其损失效力分别为:计算该模型的联合、边际、条件概率密度函数。计算例8.1答案例8.1答案例8.1答案第八章多重损因残存组确定多重损因模型多重损因表的构造多重损因模型构造残存组定义考察一组a岁的个生命,每一个生命的终止(损失)时间与原因的分布由下列联合概率密度函数确定:随机残存组函数:在年龄

x与x+n之间因原因j而离开的成员的期望个数

:在年龄

x与x+n之间因各种原因而总共离开的成员的期望个数

随机残存组函数:原先个a岁成员在x岁时的残存数随机变量的期望确定性残存组的定义总的损失效力可以看作总的损失率,而不作为条件密度函数。则一组个a岁成员随着年龄的增加按决定性损失效力演变,则原先个岁成员在x岁时的残存数为:在年龄

x与x+n之间因各种原因而离开的成员数

残存组函数:因原因j而引起的损失效力:各种原因引起的总损失效力例8.2有10000名60岁的老人购买5年定期寿险。假设在第K年里有50+10K位老人去世,有10-2K位老人退保(K=0,1,2,3,4)。试确定(1)该批老人的残存组;(2)60岁的老人能活到65岁的概率;(3)60岁的老人在63岁之前死亡的概率;(4)60岁的老人在64岁之前退保的概率。例8.2解例8.2解第八章多重损因残存组确定多重损因模型多重损因表的构造多重损因模型构造绝对损失率绝对损失函数定义

称为绝对损失率,是指原因j在的决定过程中不与其它损失原因竞争。它也称为净损失率(netprobabilitiesofdecrement)或独立损失率(independentrateofdecrement)。基本关系例8.3对于一个双重损因模型,已知:试计算例8.3解例8.3解例8.3解多重损因与绝对损因多重损因绝对损因例8.4-1在多重损因模型中已知求例8.4-1解例8.4-2在绝对损因模型中已知求例8.4-2解多重损因表构造示例年龄绝对损因表多重损因表…………650.02……0.040.019……0.039660.025……0.060.024……0.059常数损失效力假定假定条件等价推出关系式均匀分布假定假定条件等价推出由单重损失函数推导多重损因函数关系式各损因在年内服从均匀分布假定例8.5对于两重损因模型,已知每一个损因在年内服从均匀分布,试计算例8.5答案例8.6有一两重损因生命表如下,请根据已有数据,完善生命表数据:850.050.200.195860.100.300.280例8.6解850.050.200.0450.195860.100.300.0900.28例8.7对于一个多重损因表,假设各损因在分数期服从均匀分布,且已知:求例8.7解损失发生时点的影响有些特殊场合,会指定不同损因导致损失发生的时点。要考虑时点的影响例8.8有一两重损因生命表如下,已知损因1在每年内均匀发生,损因2只发生在年末,损因3只发生在每年年初,求601000000.140.10.1610.10.26245516例8.8解课堂习题已知某校一届有1000名学生,学生状况统计如下学年概率学业失败辍学其他原因辍学完成一年学业10.20.20.620.150.150.730.10.10.8400.10.9课堂习题求每届学生中,顺利毕业的期望人数等于多少,方差

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论