版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省福州市福建师范大泉州附属中学2024届中考猜题数学试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(共10小题,每小题3分,共30分)1.在实数﹣3.5、2、0、﹣4中,最小的数是()A.﹣3.5 B.2 C.0 D.﹣42.如图,A、B、C、D四个点均在⊙O上,∠AOD=70°,AO∥DC,则∠B的度数为()A.40° B.45° C.50° D.55°3.如图,把△ABC剪成三部分,边AB,BC,AC放在同一直线上,点O都落在直线MN上,直线MN∥AB,则点O是△ABC的()A.外心 B.内心 C.三条中线的交点 D.三条高的交点4.下列各数:π,sin30°,﹣,其中无理数的个数是()A.1个 B.2个 C.3个 D.4个5.一个几何体的三视图如图所示,则该几何体的表面积是()A.24+2π B.16+4π C.16+8π D.16+12π6.抛物线y=mx2﹣8x﹣8和x轴有交点,则m的取值范围是()A.m>﹣2 B.m≥﹣2 C.m≥﹣2且m≠0 D.m>﹣2且m≠07.已知是二元一次方程组的解,则的算术平方根为()A.±2 B. C.2 D.48.如图,数轴上有A,B,C,D四个点,其中表示互为相反数的点是A.点A和点C B.点B和点DC.点A和点D D.点B和点C9.绿豆在相同条件下的发芽试验,结果如下表所示:每批粒数n100300400600100020003000发芽的粒数m9628238257094819042850发芽的频率0.9600.9400.9550.9500.9480.9520.950下面有三个推断:①当n=400时,绿豆发芽的频率为0.955,所以绿豆发芽的概率是0.955;②根据上表,估计绿豆发芽的概率是0.95;③若n为4000,估计绿豆发芽的粒数大约为3800粒.其中推断合理的是()A.① B.①② C.①③ D.②③10.抛物线y=3(x﹣2)2+5的顶点坐标是()A.(﹣2,5)B.(﹣2,﹣5)C.(2,5)D.(2,﹣5)二、填空题(本大题共6个小题,每小题3分,共18分)11.一个圆锥的侧面展开图是半径为8cm、圆心角为120°的扇形,则此圆锥底面圆的半径为________.12.下面是“利用直角三角形作矩形”尺规作图的过程.已知:如图1,在Rt△ABC中,∠ABC=90°.求作:矩形ABCD.小明的作法如下:如图2,(1)分别以点A、C为圆心,大于AC同样长为半径作弧,两弧交于点E、F;(2)作直线EF,直线EF交AC于点O;(3)作射线BO,在BO上截取OD,使得OD=OB;(4)连接AD,CD.∴四边形ABCD就是所求作的矩形.老师说,“小明的作法正确.”请回答,小明作图的依据是:__________________________________________________.13.若有意义,则x的范围是_____.14.若有意义,则x的取值范围是.15.含45°角的直角三角板如图放置在平面直角坐标系中,其中A(-2,0),B(0,1),则直线BC的解析式为______.16.如图,在平面直角坐标系中,四边形OABC是边长为2的正方形,顶点A、C分别在x轴、y轴的正半轴上,点Q在对角线OB上,若OQ=OC,则点Q的坐标为_______.三、解答题(共8题,共72分)17.(8分)(感知)如图①,四边形ABCD、CEFG均为正方形.可知BE=DG.(拓展)如图②,四边形ABCD、CEFG均为菱形,且∠A=∠F.求证:BE=DG.(应用)如图③,四边形ABCD、CEFG均为菱形,点E在边AD上,点G在AD延长线上.若AE=2ED,∠A=∠F,△EBC的面积为8,菱形CEFG的面积是_______.(只填结果)18.(8分)如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止)转动转盘一次,求转出的数字是-2的概率;转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.19.(8分)某校初三进行了第三次模拟考试,该校领导为了了解学生的数学考试情况,抽样调查了部分学生的数学成绩,并将抽样的数据进行了如下整理.(1)填空_______,_______,数学成绩的中位数所在的等级_________.(2)如果该校有1200名学生参加了本次模拟测,估计等级的人数;(3)已知抽样调查学生的数学成绩平均分为102分,求A级学生的数学成绩的平均分数.①如下分数段整理样本等级等级分数段各组总分人数48435741712②根据上表绘制扇形统计图20.(8分)(1)计算:;(2)化简:.21.(8分)如图1,矩形ABCD中,E是AD的中点,以点E直角顶点的直角三角形EFG的两边EF,EG分别过点B,C,∠F=30°.(1)求证:BE=CE(2)将△EFG绕点E按顺时针方向旋转,当旋转到EF与AD重合时停止转动.若EF,EG分别与AB,BC相交于点M,N.(如图2)①求证:△BEM≌△CEN;②若AB=2,求△BMN面积的最大值;③当旋转停止时,点B恰好在FG上(如图3),求sin∠EBG的值.22.(10分)如图,四边形ABCD的顶点在⊙O上,BD是⊙O的直径,延长CD、BA交于点E,连接AC、BD交于点F,作AH⊥CE,垂足为点H,已知∠ADE=∠ACB.(1)求证:AH是⊙O的切线;(2)若OB=4,AC=6,求sin∠ACB的值;(3)若,求证:CD=DH.23.(12分)已知点P,Q为平面直角坐标系xOy中不重合的两点,以点P为圆心且经过点Q作⊙P,则称点Q为⊙P的“关联点”,⊙P为点Q的“关联圆”.(1)已知⊙O的半径为1,在点E(1,1),F(﹣,),M(0,-1)中,⊙O的“关联点”为______;(2)若点P(2,0),点Q(3,n),⊙Q为点P的“关联圆”,且⊙Q的半径为,求n的值;(3)已知点D(0,2),点H(m,2),⊙D是点H的“关联圆”,直线y=﹣x+4与x轴,y轴分别交于点A,B.若线段AB上存在⊙D的“关联点”,求m的取值范围.24.某公司10名销售员,去年完成的销售额情况如表:销售额(单位:万元)34567810销售员人数(单位:人)1321111(1)求销售额的平均数、众数、中位数;(2)今年公司为了调动员工积极性,提高年销售额,准备采取超额有奖的措施,请根据(1)的结果,通过比较,合理确定今年每个销售员统一的销售额标准是多少万元?
参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】
根据任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小进行比较即可【详解】在实数﹣3.5、2、0、﹣4中,最小的数是﹣4,故选D.【点睛】掌握实数比较大小的法则2、D【解析】试题分析:如图,连接OC,∵AO∥DC,∴∠ODC=∠AOD=70°,∵OD=OC,∴∠ODC=∠OCD=70°,∴∠COD=40°,∴∠AOC=110°,∴∠B=∠AOC=55°.故选D.考点:1、平行线的性质;2、圆周角定理;3等腰三角形的性质3、B【解析】
利用平行线间的距离相等,可知点到、、的距离相等,然后可作出判断.【详解】解:如图,过点作于,于,于.图1,(夹在平行线间的距离相等).如图:过点作于,作于E,作于.由题意可知:,,,∴,∴图中的点是三角形三个内角的平分线的交点,点是的内心,故选B.【点睛】本题考查平行线间的距离,角平分线定理,三角形的内心,解题的关键是判断出.4、B【解析】
根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的个数即可.【详解】sin30°=,=3,故无理数有π,-,故选:B.【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.5、D【解析】
根据三视图知该几何体是一个半径为2、高为4的圆柱体的纵向一半,据此求解可得.【详解】该几何体的表面积为2וπ•22+4×4+×2π•2×4=12π+16,故选:D.【点睛】本题主要考查由三视图判断几何体,解题的关键是根据三视图得出几何体的形状及圆柱体的有关计算.6、C【解析】
根据二次函数的定义及抛物线与x轴有交点,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围.【详解】解:∵抛物线和轴有交点,,解得:且.故选.【点睛】本题考查了抛物线与x轴的交点、二次函数的定义以及解一元一次不等式组,牢记“当时,抛物线与x轴有交点是解题的关键.7、C【解析】二元一次方程组的解和解二元一次方程组,求代数式的值,算术平方根.【分析】∵是二元一次方程组的解,∴,解得.∴.即的算术平方根为1.故选C.8、C【解析】
根据相反数的定义进行解答即可.【详解】解:由A表示-2,B表示-1,C表示0.75,D表示2.根据相反数和为0的特点,可确定点A和点D表示互为相反数的点.故答案为C.【点睛】本题考查了相反数的定义,掌握相反数和为0是解答本题的关键.9、D【解析】
①利用频率估计概率,大量反复试验下频率稳定值即概率,n=400,数值较小,不能近似的看为概率,①错误;②利用频率估计概率,大量反复试验下频率稳定值即概率,可得②正确;③用4000乘以绿豆发芽的的概率即可求得绿豆发芽的粒数,③正确.【详解】①当n=400时,绿豆发芽的频率为0.955,所以绿豆发芽的概率大约是0.955,此推断错误;②根据上表当每批粒数足够大时,频率逐渐接近于0.950,所以估计绿豆发芽的概率是0.95,此推断正确;③若n为4000,估计绿豆发芽的粒数大约为4000×0.950=3800粒,此结论正确.故选D.【点睛】本题考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.10、C【解析】
根据二次函数的性质y=a(x﹣h)2+k的顶点坐标是(h,k)进行求解即可.【详解】∵抛物线解析式为y=3(x-2)2+5,∴二次函数图象的顶点坐标是(2,5),故选C.【点睛】本题考查了二次函数的性质,根据抛物线的顶点式,可确定抛物线的开口方向,顶点坐标(对称轴),最大(最小)值,增减性等.二、填空题(本大题共6个小题,每小题3分,共18分)11、cm【解析】试题分析:把扇形的弧长等于圆锥底面周长作为相等关系,列方程求解.设此圆锥的底面半径为r,根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得,2πr=,r=cm.考点:圆锥侧面展开扇形与底面圆之间的关系12、到线段两端点的距离相等的点在这条线段的垂直平分线上;对角线互相平分的四边形为平行四边形;有一个角为90°的平行四边形为矩形【解析】
先利用作法判定OA=OC,OD=OB,则根据平行四边形的判定方法判断四边形ABCD为平行四边形,然后根据矩形的判定方法判断四边形ABCD为矩形.【详解】解:由作法得EF垂直平分AC,则OA=OC,而OD=OB,所以四边形ABCD为平行四边形,而∠ABC=90°,所以四边形ABCD为矩形.故答案为到线段两段点的距离相等的点在这条线段的垂直平分线上;对角线互相平分的四边形为平行四边形;有一个内角为90°的平行四边形为矩形.【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.13、x≤1.【解析】
根据二次根式有意义的条件、分式有意义的条件列出不等式,解不等式即可.【详解】依题意得:1﹣x≥0且x﹣3≠0,解得:x≤1.故答案是:x≤1.【点睛】本题主要考查了二次根式和分式有意义的条件,关键是掌握二次根式中的被开方数必须是非负数,分式有意义的条件是分母不等于零.14、x≥8【解析】略15、【解析】
过C作CD⊥x轴于点D,则可证得△AOB≌△CDA,可求得CD和OD的长,可求得C点坐标,利用待定系数法可求得直线BC的解析式.【详解】如图,过C作CD⊥x轴于点D.∵∠CAB=90°,∴∠DAC+∠BAO=∠BAO+∠ABO=90°,∴∠DAC=∠ABO.在△AOB和△CDA中,∵,∴△AOB≌△CDA(AAS).∵A(﹣2,0),B(0,1),∴AD=BO=1,CD=AO=2,∴C(﹣3,2),设直线BC解析式为y=kx+b,∴,解得:,∴直线BC解析式为yx+1.故答案为yx+1.【点睛】本题考查了待定系数法及全等三角形的判定和性质,构造全等三角形求得C点坐标是解题的关键.16、(2,2)【解析】如图,过点Q作QD⊥OA于点D,∴∠QDO=90°.∵四边形OABC是正方形,且边长为2,OQ=OC,∴∠QOA=45°,OQ=OC=2,∴△ODQ是等腰直角三角形,∴OD=OQ=22=2∴点Q的坐标为(2三、解答题(共8题,共72分)17、见解析【解析】试题分析:探究:由四边形ABCD、四边形CEFG均为菱形,利用SAS易证得△BCE≌△DCG,则可得BE=DG;
应用:由AD∥BC,BE=DG,可得S△ABE+S△CDE=S△BEC=S△CDG=8,又由AE=3ED,可求得△CDE的面积,继而求得答案.试题解析:探究:∵四边形ABCD、四边形CEFG均为菱形,
∴BC=CD,CE=CG,∠BCD=∠A,∠ECG=∠F.
∵∠A=∠F,
∴∠BCD=∠ECG.
∴∠BCD-∠ECD=∠ECG-∠ECD,
即∠BCE=∠DCG.
在△BCE和△DCG中,∴△BCE≌△DCG(SAS),
∴BE=DG.应用:∵四边形ABCD为菱形,
∴AD∥BC,
∵BE=DG,
∴S△ABE+S△CDE=S△BEC=S△CDG=8,
∵AE=3ED,∴S△CDE=,∴S△ECG=S△CDE+S△CDG=10∴S菱形CEFG=2S△ECG=20.18、(1);(2).【解析】【分析】(1)根据题意可求得2个“-2”所占的扇形圆心角的度数,再利用概率公式进行计算即可得;(2)由题意可得转出“1”、“3”、“-2”的概率相同,然后列表得到所有可能的情况,再找出符合条件的可能性,根据概率公式进行计算即可得.【详解】(1)由题意可知:“1”和“3”所占的扇形圆心角为120°,所以2个“-2”所占的扇形圆心角为360°-2×120°=120°,∴转动转盘一次,求转出的数字是-2的概率为=;(2)由(1)可知,该转盘转出“1”、“3”、“-2”的概率相同,均为,所有可能性如下表所示:第一次第二次1-231(1,1)(1,-2)(1,3)-2(-2,1)(-2,-2)(-2,3)3(3,1)(3,-2)(3,3)由上表可知:所有可能的结果共9种,其中数字之积为正数的的有5种,其概率为.【点睛】本题考查了列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.19、(1)6;8;B;(2)120人;(3)113分.【解析】
(1)根据表格中的数据和扇形统计图中的数据可以求得本次抽查的人数,从而可以得到m、n的值,从而可以得到数学成绩的中位数所在的等级;
(2)根据表格中的数据可以求得D等级的人数;
(3)根据表格中的数据,可以计算出A等级学生的数学成绩的平均分数.【详解】(1)本次抽查的学生有:(人),
,
数学成绩的中位数所在的等级B,
故答案为:6,11,B;
(2)120(人),
答:D等级的约有120人;
(3)由表可得,
A等级学生的数学成绩的平均分数:(分),
即A等级学生的数学成绩的平均分是113分.【点睛】本题考查了扇形统计图、中位数、加权平均数,解答本题的关键是明确题意,利用数形结合的思想解答.20、(1)4+;(2).【解析】
(1)根据幂的乘方、零指数幂、特殊角的三角函数值和绝对值可以解答本题;(3)根据分式的减法和除法可以解答本题.【详解】(1)=4+1+|1﹣2×|=4+1+|1﹣|=4+1+﹣1=4+;(2)===.【点睛】本题考查分式的混合运算、实数的运算、零指数幂、特殊角的三角函数值和绝对值,解答本题的关键是明确它们各自的计算方法.21、(1)详见解析;(1)①详见解析;②1;③.【解析】
(1)只要证明△BAE≌△CDE即可;(1)①利用(1)可知△EBC是等腰直角三角形,根据ASA即可证明;②构建二次函数,利用二次函数的性质即可解决问题;③如图3中,作EH⊥BG于H.设NG=m,则BG=1m,BN=EN=m,EB=m.利用面积法求出EH,根据三角函数的定义即可解决问题.【详解】(1)证明:如图1中,∵四边形ABCD是矩形,∴AB=DC,∠A=∠D=90°,∵E是AD中点,∴AE=DE,∴△BAE≌△CDE,∴BE=CE.(1)①解:如图1中,由(1)可知,△EBC是等腰直角三角形,∴∠EBC=∠ECB=45°,∵∠ABC=∠BCD=90°,∴∠EBM=∠ECN=45°,∵∠MEN=∠BEC=90°,∴∠BEM=∠CEN,∵EB=EC,∴△BEM≌△CEN;②∵△BEM≌△CEN,∴BM=CN,设BM=CN=x,则BN=4-x,∴S△BMN=•x(4-x)=-(x-1)1+1,∵-<0,∴x=1时,△BMN的面积最大,最大值为1.③解:如图3中,作EH⊥BG于H.设NG=m,则BG=1m,BN=EN=m,EB=m.∴EG=m+m=(1+)m,∵S△BEG=•EG•BN=•BG•EH,∴EH==m,在Rt△EBH中,sin∠EBH=.【点睛】本题考查四边形综合题、矩形的性质、等腰直角三角形的判定和性质、全等三角形的判定和性质、旋转变换、锐角三角函数等知识,解题的关键是准确寻找全等三角形解决问题,学会添加常用辅助线,学会利用参数解决问题,22、(1)证明见解析;(2);(3)证明见解析.【解析】
(1)连接OA,证明△DAB≌△DAE,得到AB=AE,得到OA是△BDE的中位线,根据三角形中位线定理、切线的判定定理证明;(2)利用正弦的定义计算;(3)证明△CDF∽△AOF,根据相似三角形的性质得到CD=CE,根据等腰三角形的性质证明.【详解】(1)证明:连接OA,由圆周角定理得,∠ACB=∠ADB,∵∠ADE=∠ACB,∴∠ADE=∠ADB,∵BD是直径,∴∠DAB=∠DAE=90°,在△DAB和△DAE中,,∴△DAB≌△DAE,∴AB=AE,又∵OB=OD,∴OA∥DE,又∵AH⊥DE,∴OA⊥AH,∴AH是⊙O的切线;(2)解:由(1)知,∠E=∠DBE,∠DBE=∠ACD,∴∠E=∠ACD,∴AE=AC=AB=1.在Rt△ABD中,AB=1,BD=8,∠ADE=∠ACB,∴sin∠ADB==,即sin∠ACB=;(3)证明:由(2)知,OA是△BDE的中位线,∴OA∥DE,OA=DE.∴△CDF∽△AOF,∴=,∴CD=OA=DE,即CD=CE,∵AC=AE,AH⊥CE,∴CH=HE=CE,∴CD=CH,∴CD=DH.【点睛】本题考查的是圆的知识的综合应用,掌握圆周角定理、相似三角形的判定定理和性质定理、三角形中位线定理是解题的关键.23、(1)F,M;(1)n=1或﹣1;(3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 阜阳师范大学《经济数学二》2021-2022学年第一学期期末试卷
- 阜阳师范大学《标识设计》2023-2024学年第一学期期末试卷
- 无锡市2024-2025学年五年级上学期11月期中调研数学试卷一(有答案)
- 福建师范大学协和学院《外国文学》2022-2023学年第一学期期末试卷
- 福建师范大学《西方音乐史》2023-2024学年第一学期期末试卷
- 福建师范大学《人文地理学原理与方法》2023-2024学年第一学期期末试卷
- 福建师范大学《教育学(含教师职业道德)》2023-2024学年第一学期期末试卷
- 福建师范大学《化工基础》2022-2023学年第一学期期末试卷
- 福建师范大学《歌曲分析与写作》2023-2024学年第一学期期末试卷
- 第12章 医学节肢动物课件
- 预制梁场成本分析
- 《Monsters 怪兽》中英对照歌词
- 华东地区SMT公司信息
- 物业管理公司法律顾问服务方案
- 拌合站粉罐基础验算(共11页)
- 自动售货机投放协议(模板)
- 签证用完整户口本英文翻译模板
- 初三数学第一单元测试卷(共4页)
- 甘肃省公路路产损坏赔偿收费标准
- 骨折病人伤肢肿胀的护理
- 复习酒水投标书
评论
0/150
提交评论