《负折射率介质》课件_第1页
《负折射率介质》课件_第2页
《负折射率介质》课件_第3页
《负折射率介质》课件_第4页
《负折射率介质》课件_第5页
已阅读5页,还剩33页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

光学课件2009.4.21精选PPT光学课件2009.4.21精选PPT负折射率介质简介2精选PPT负折射率介质简介2精选PPT

一、负折射的定义及性质二、负折射的电磁学解释三、负折射材料的制备四、负折射材料的应用前景五、总结3精选PPT一、负折射的定义及性质3精选PPT负折射引言

负折射现象是俄国科学家Veselago在1968年提出的:当光波从具有正折射率的材料入射到具有负折射率材料的界面时,光波的折射与常规折射相反,入射波和折射波处于界面法线方向同一侧。直到本世纪初这种具有负折射率的材料才被制备出来。这种材料由金属线和非闭合金属环周期排列构成,也被称为metamaterial。在这种材料中,电场、磁场和波矢方向遵守“左手”法则,而非常规材料中的“右手”法则。因此,这种具有负折射率的材料也被称为左手材料,光波在其中传播时,能流方向与波矢方向相反。英国科学家Pendry提出折射率为-1的一个平板材料可以作为透镜实现完美成像,可以放大衰势波使成像的大小突破光学衍射极限。负折射现象实验和超透镜提出时引起极大的争议,因为这些概念违反人们的直觉。

4精选PPT负折射引言负折射现象是俄国科学家Vesel1、什么是负折射率及左手性介质右手性介质(常规介质)——介质中电场、磁场和波矢三者构成右手关系,波的折射遵循斯涅尔(Snell)定律。左手性介质(负折射率介质)——介质中电场、磁场和波矢三者构成左手关系,波的折射不遵循斯涅尔(Snell)定律。5精选PPT1、什么是负折射率及左手性介质右手性介质(常规介质)——介质斯涅尔定律斯涅尔定律:即折射定律,由荷兰数学家斯涅尔发现,是在光的折射现象中,确定折射光线方向的定律。当光由第一媒质(折射率n1)射入第二媒质(折射率n2)时,在平滑界面上,部分光由第一媒质进入第二媒质后即发生折射。实验指出:(1)折射光线位于入射光线和界面法线所决定的平面内;(2)折射线和入射线分别在法线的两侧;(3)入射角i的正弦和折射角i′的正弦的比值,对折射率一定的两种媒质来说是一个常数.

6精选PPT斯涅尔定律斯涅尔定律:即折射定律,由荷兰数学家斯涅尔发现,是2、负折射率介质的异常传播性质7精选PPT2、负折射率介质的异常传播性质7精选PPT

8精选PPT8精选PPT

3、逆多普勒效应9精选PPT3、逆多普勒效应9精选PPT4、在分界面上的边界条件10精选PPT4、在分界面上的边界条件10精选PPT5、负Goos-Hanchen位移11精选PPT5、负Goos-Hanchen位移11精选PPT6、逆切连科夫辐射

12精选PPT6、逆切连科夫辐射

12精选PPT3、为什么折射率可以是负的负折射率有两种情况:

第一种是在几何光学中,将反射镜等效地看成一个折射率为-1的透射镜,这样,所有透射系统的成像公式就可以形式不变地应用到反射系统了。然而,这种情况下只是数学形式上的等效,并不是折射率真的为负数。

13精选PPT3、为什么折射率可以是负的负折射率有两种情况:

第一种是

第二种情况是在所谓的“左手媒质”中。这是一种奇异的媒质,它的介电常量和磁导率都是负的,折射率也是负的。电磁学理论并不排除这种媒质的存在,而且实验上也观测到了这种媒质。关于它的电磁性质和光学性质已有专门的著作论述。对于“左手媒质”,折射定律仍然成立,这时入射角和折射角符号相反,说明折射光线和入射光线在法线的同侧(注意,这仍然是透射,并不是反射,因为光线进入了第二种媒质)。返回14精选PPT第二种情况是在所谓的“左手媒质”中。这是一种奇异1、折射现象1、折射现象折射是自然界最基本的电磁现象之一。当电磁波以任意角度入射到两种不同折射率的介质交界面处时,波传播的方向会发生变化。15精选PPT1、折射现象1、折射现象15精选PPT

16精选PPT16精选PPT2、电介质理论

1837年,法拉第最先提出电介质在电场中极化的概念.1850年,0.F.Mosotti提出了电介质极化理论方程:,式中M是分子量,是电介质密度,是空气分子平均极化率,是阿伏伽德罗常数.由于R.Clausius也曾导出此式,上式称为Clausius-Mosotti方程.它的适用范围是:非极性分子、低密度介质.推导时用许多导体圆球代表分子.17精选PPT2、电介质理论1837年,法拉第最先提出电介质

1880年,H.A.Lorenntz和L.V.Lorenz用光学方法导出了一个包含折射率的公式,称为Lorentz-Lorenz方程.

对比上式,,其应用范围仍为非极性分子18精选PPT1880年,H.A.Loren

对于极性分子的介质,1912年,德拜给出,式中u为电偶极矩,k为玻尔兹曼常数,T为绝对温度.上式说明,静电场中总极化由诱导(变形)极化和取向极化两种作用组成.如分子u=0,德拜方程简化为Clausius-Mosotti方程.但如外场为交变电场,要考虑极性分子的弛豫时间的影响,这时该式改为可见,弛豫时间的影响是由取向极化率的改变而实现的.19精选PPT对于极性分子的介质,1

因此,对极性分子介质而言,只有(以及n)才与频率无关,才成立.总的讲,当频率f<100GHz时,的影响可不考虑,式保持正确.这就不难理解.近年来的负折射率研究是在微波段(10GHz以下)取得成功的原因.20精选PPT因此,对极性分子介质而言,只有3、理论解释在一般条件下有。故有,这里的负号不能随便丢掉.在某种材料同时具有<0,<0时,上式右端可能应取负值.接近透明媒质的折射率函数n(w)的实部通常是正值.D.R.Smith和N.Kroll分析了电流源向一维左手化媒质(LHM)辐射的情况(该媒质的介电常数和导磁率均为负),对n(w)函数的深入分析,证明在某个频区Re[n(w)]实际上必须为负值.21精选PPT3、理论解释在一般条件下有

22精选PPT22精选PPT4、讨论1、负折射现象违反费马原理吗?2、电场能量密度为,磁场能量密度为。式中E、H分别为电场强度、磁场强度;如果,我们μ<0,ε<0,就得到负的和,亦即负电磁能量。ε、μ为负,是否带来了负能量?

返回23精选PPT4、讨论1、负折射现象违反费马原理吗?返回23精选PPT1、制备方法普通材料的折射率始终是正值。然而,在20世纪90年代,英国伦敦帝国理工学院的彼德利认为建造折射率为负值的人造材料是可能的。这种决窍在于聚集一群当他们经过时可以与光波的电磁场产生共鸣的电子元件。这些材料不像任何常规的物质,因此他们的名字叫作“超颖物质”。

24精选PPT1、制备方法普通材料的折射率始终是正值。然

制备超颖物质的方法是:先在一块玻璃板上沉积一层银,随后在上面覆盖一层薄薄的不传导的镁氟化物,最后再覆上一层银,这样就形成了一块100纳米厚“三明治”。然后,多林在这样金属三明治上蚀刻上一群方孔,以创造出一种类似于金属丝网的栅格。

25精选PPT制备超颖物质的方法是:25精选PPT

目前理论和实验报道的负折射效应都局限于周期性人工微结构材料,典型的有由金属导线阵列和有缺口的环形共振器组成的周期阵列和由电介质材料周期排列成的光子晶体。前者只能工作在微波波段,而后者的工作波段可延伸到可见光和红外区域。总的来说,在这些周期性结构中,晶格点阵的Bragg散射起着重要的作用。负折射效应可以说是非均匀媒质对电磁波的复杂集体响应行为的等效表观现象。26精选PPT目前理论和实验报道的负折射效应都局人工构造的负折射率介质样品27精选PPT人工构造的负折射率介质样品27精选PPT2、负折射率的实验证明28精选PPT2、负折射率的实验证明28精选PPT

上图是测量装置,被测样品(棱镜)置于两块圆形铝板(直径30cM)之间,板距1.2cm.粗黑箭头表示来波方向和折射(按n>0)方向,检测器是用x频段波导连接的微波功率测量装置,实际上是用波导——同轴转换器及HP8756A型标量网络分析仪.微波波束从棱镜射出时,表面为折射界面(按Snell定律规定的角度方向).现在把检测器安装在可旋转的架子上(1.5°步进),这时试验人员就可以对RHM,LHM分别测量其接收电平与角度()的关系,并作比较.下图左是取频率f=10.5GHz时接收电平与折射角的关系,为了方便,把两种样品的峰值电平都归一化为1。结果是,对于常规树料(RHM)的Teflon,峰值发生在27°处,对应n=1.40.1;对于LHM系统,峰值发生在-61°处,对应n=-2.70.1.可见,在LHM情况下、折射角与BHM相差88°(接近π/2即90度).故在一定频率(满足LHM要求的频率)下,折射角按与Snell定律指示的不同方向偏转,呈现n<0。29精选PPT上图是测量装置,被测样品(棱镜)置于两

30精选PPT30精选PPT

上图是折射率与频率的关系(蓝实线为Tenflon,黑实线为LHM).当f=10.2—10,8GHz时,LHM处在负折射率频区,且高度色散性.总之,Veselago在32年前的预测得到了证明.返回31精选PPT上图是折射率与频率的关系(蓝实线为T1、隐身技术要实现材料的隐身,最关键的技术就是制造出能扭曲可见光波的材料,只要制造出性能合适的材料,实用的“隐身衣”完全可能在近期问世,因此,能使光波“弯曲”的负折射率材料在实验上的成功合成,为可见光的区的隐身技术提供了关键性的基础。

32精选PPT1、隐身技术要实现材料的隐身,最关键的技术

在负折射率材料中,电场、磁场和波矢方向遵守“左手”法则,而并非常规材料中的“右手”法则。当光从具有正折射率的材料(常规材料)入射到具有正折射率材料的界面时,入射光线和折射光线分别位于法线两侧,这是我们所熟知的结果。而当光从具有正折射率的材料入射到具有负折射率材料的界面时,光的折射与常规折射相反,入射光线和折射光线处在于界面法线方向同一侧,也就是说,在这种材料中,光出现了异常传播,出现了扭曲的现象。

33精选PPT在负折射率材料中,电场、磁2、光学器件上的应用

负折射介质的一个重要应用是透镜成像。理论和实验均表明,所制备的准晶光子平板结构确实能够对从点光源发出的电磁波起会聚和成像作用。而且,所成的像可在近场区域之外,像距随物距的增大而线性增大,这些特征和一个理想的折射率为-1的介质平板的折射和成像行为十分吻合,充分表明了所制备的准晶光子结构具有优良的负折射性质。34精选PPT2、光学器件上的应用负折射

负折射介质最引人注目的地方是它们能够放大倏逝波,从而实现“超透镜效应”,极大地提高了透镜成像的分辨率。这将在核磁共振成像、光存储和超大规模集成电路中的光刻技术等诸多方面得到应用。

35精选PPT

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论