版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
年成都市高中阶段教育学校统一招生暨初中学业水平考试数学A卷(共100分)第Ⅰ卷(选择题,共32分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1.下列各数中,是负数的是()A.5 B. C.0 D.2.如图所示的几何体是由5个大小相同的小立方块搭成,它的主视图是()3.2023年3月1日,中国海油宣布,在渤海南部发现国内最大的变质岩潜山油田——渤中26-6亿吨级油田,探明地质储量超1.3亿吨油当量.将数据1.3亿用科学记数法表示为()A. B. C. D.4.下列计算正确的是()A. B. C. D.5.爱成都,迎大运.成都将以年轻的笑脸、奔放的热情、周到的服务、完善的设施迎接大运会.为此,某中学举办了“喜迎大运会”知识竞赛,其中九年级8个班在竞赛中的平均成绩分别为:88,90,88,90,91,92,80,88,则这组数据的众数和中位数分别是()A.90,89 B.88,89 C.88,90 D.3,90.56.成语“朝三暮四”讲述了一位老翁喂养猴子的故事,老翁为了限定猴子的食量分早晚两次投喂,早上的粮食是晚上的,猴子们对于这个安排很不满意,于是老翁进行调整,从晚上的粮食中取2千克放在早上投喂,这样早上的粮食是晚上的,猴子们对这样的安排非常满意.设调整前早上的粮食是x千克,晚上的粮食是y千克,则可列方程组为()A. B. C. D.7.如图,在菱形中,E是边上一点,连接,点F,G均在上,连接,,且,只添加一个条件,能判定的是()A. B.C. D.8.关于二次函数,下列说法正确的是()A.二次函数有最小值 B.函数图象经过点C.当时,y随x的增大而减小 D.当时,函数图象与x轴有一个交点第Ⅱ卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20分)9.分解因式:________.10.已知是分式方程的解,则m的值为________.11.如图,内接于,是的直径,若,则劣弧的长度为________.12.已知一次函数的图象经过点,且y随x的增大而减小,请写出一个符合条件的一次函数解析式________.13.如图,在等边中,按以下步骤作图:①以点A为圆心,适当长为半径作弧,分别交,于点E,F;②分别以点E,F为圆心,大于的长为半径作弧,两弧在内交于点M;③作射线,交于点N.若,则的周长为________.三、解答题(本大题共5个小题,共48分)14.(本小题满分12分,每题6分)(1)计算:;(2)甲、乙两位同学合作学习一元一次不等式组,要求两位同学分别给出一个关于x的不等式.甲:我写的不等式的解集为;乙:我给出的不等式在求解过程中需要去分母.①请你填写符合上述条件的不等式:甲:________;乙:________;②将①中的两个不等式列成不等式组,解此不等式组并把它的解集在数轴上表示出来.15.(本小题满分8分)2023年2月10日,全国首个地铁数字艺术空间亮相成都地铁东大路站,首展《千里江山图》以全新面貌呈现.在这场数字文化艺术展览中,观众可以走进“数字科技+传统文化”地铁空间,体验一场千年穿越之旅.小宇在校园内随机抽取若干名学生,以“千里江山图”为主题对他们进行问卷式知识检测(满分100分),并将结果进行统计,绘制成如下不完整的统计图表.(A.,B.,C.,D.)根据图表信息,解答以下问题:(1)随机调查的学生总人数为________;(2)计算扇形统计图中“A”组对应的圆心角的度数;(3)若该校共有3000名学生,请估计成绩在80分及以上的人数.16.(本小题满分8分)桌面上的某创意可折叠台灯的实物图如图①所示,将其抽象成图②,经测量,,灯杆的长为,灯管的长为,底座的厚度为.不考虑其它的因素,求台灯的高(点E到桌面的距离).(结果精确到;参考数据:,,,)17.(本小题满分10分)如图,内接于,是的直径,D为的中点,连接并延长交于点E,过点E作的平行线交的延长线于点F,连接,与交于点G.(1)求证:是的切线;(2)若,,求的长.18.(本小题满分10分)如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象相交于,B两点.(1)求反比例函数的表达式及点B的坐标;(2)点C是第三象限内的反比例函数图象上一点,当的面积最小时,求的值;(3)点P是坐标轴上一点,若,求点P的坐标.B卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)19.定义:若一个实数与比它小1的数的乘积为1,则称这两个数互为“异倒数”,若实数a有异倒数,则代数式的值为________.20.若,是一元二次方程的两个实数根,且,则________·21.根据图中数字的变化规律,第⑩个图中的________,________.22.2023年1月16日,成都市首届“最美公园”评选活动结果出炉,评选出了兴隆湖生态公园、丹景山游道公园、交子公园、活水公园等具有成都园林特色和时代特征的“最美公园”.小叶和小沐均计划周末去以上四个公园中的一个游玩,则他们会去同一个公园的概率为________.23.如图,在四边形中,,,,E,F是边上的两个动点,,连接,,则的最小值为________.二、解答题(本大题共3个小题,共30分)24.(本小题满分8分)每年春运的腊月二十至正月初七这18天(包含腊月二十和正月初七这两天,默认农历腊月为三十天)都会对航空公司的某条热门航线造成航运压力.今年航空公司对该航线下午17:30起飞的机票进行价格调整:票价y(元/张)与腊月二十始第x天的函数关系如图所示,据历年的平均数据,搭乘该航班的人数与x满足函数关系:(1)求票价与x之间的函数表达式;(2)试估算该航班这18天期间哪一天的收入最高?最高收入是多少?25.(本小题满分10分)在平面直角坐标系中,抛物线与x轴交于,B两点,与y轴交于点C,是抛物线对称轴上一点.(1)求b,c的值;(2)如图①,连接,,求的值;(3)如图②,一次函数的图象经过点M,且与抛物线交于E,F两点,过E,F作直线的垂线,垂足分别为点G,H,连接,,试判断是否为定角,若是定角,求出其角度;若不是定角,请说明理由.26.(本小题满分12分)综合与实践问题情境:在数学活动课上,老师给出这样一个问题:如图①,矩形纸片的边,,沿对角线剪开,得到两个直角三角形纸片,分别为和.将固定不动,平移.操作探究:(1)如图②,把沿射线平移得到,当时,请直接写出平移的距离;探究发现:(2)如图③,把沿射线平移得到,连接,,判断四边形的形状,并证明;探究拓展:(3)记为,将其拼接到如图④的位置,并使与A重合,与C重合,然后把沿射线方向平移,平移的距离是,使点,D,中的某一点与点B和C构成的三角形是等腰三角形,在图⑤中补全图形,求出你探究的等腰三角形和平移的距离l(写出一种即可).数学快速对答案A卷(共100分)第Ⅰ卷(选择题,共32分)一、选择题(本大题共8个小题,每小题4分,共32分)1~5DCCDB 6~8BAA第Ⅱ卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20分)9. 10. 11. 12.(答案不唯一) 13.三、解答题B卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)19.1 20. 21.100,110 22. 23.二、解答题详解详析1.D2.C【解析】主视图、左视图、俯视图分别是从物体的正面、左面、上面看到的图形,本题主视图是从前往后看,几何体从左往右有2列,第一列有2层,第二列有1层,故C选项符合题意.3.C4.D【解析】逐项分析如下:选项逐项分析正误A×B×C×D√5.B【解析】将这组数据按照从小到大的顺序排列为:80,88,88,88,90,90,91,92,数据88出现了3次,次数最多,这组数据的众数为88;88,90处在最中间的两个位置,第4位和第5位,这组数据的中位数是.6.B【解析】调整前早上的粮食是x千克,晚上的粮食是y千克,且早上的粮食是晚上的,.老翁从晚上的粮食中取2千克放在早上投喂后,早上粮食为千克,晚上粮食为千克.调整后早上的粮食是晚上的,,可列方程组命题立意本题以成语“朝三暮四”为背景,结合二元一次方程组,让学生在学习数学知识的过程中,了解我国的汉语文化,引导学生关注我国古代文化中的数学成就,对于学生感悟中华民族智慧与创造、坚定民族自豪感、坚定文化自信具有重要作用.7.A【解析】四边形是菱形,.,,.当时,,,.8.A【解析】,图象开口向上,二次函数有最小值,故选项A正确;当时,.的值不确定,图象不一定经过点,故选项B错误;二次函数图象的对称轴为直线,且开口向上,当时,y随x的增大而增大,当时,y随x的增大而减小,故选项C错误;当时,,函数图象与x轴有两个交点,故选项D错误.9.10.【解析】是分式方程的解,,解得.11.【解析】如解图,连接.是的直径,.,,,,劣弧的长为.12.(答案不唯一)【解析】一次函数的图象经过点,.随x的增大而减小,.令,则,解得,一次函数的解析式为.新考法解读本题以结论开放的形式考查一次函数的图象与性质,引导学生发散思维,积极思考,培养学生的创新意识和创新能力.试题命制符合《教育部关于加强初中学业水平考试命题工作的意见》中强调的“提高开放性试题的比例”要求,具有一定的趋势.13.【解析】为等边三角形,.由尺规作图的痕迹可知为的平分线,,,.,,,的周长为.14.解:(1)原式;(2)①;(答案不唯一);(答案不唯一)②不等式组为解不等式①,得,解不等式②,得,不等式组的解集为.解集在数轴上表示如解图.新考法解读本题以结论开放的形式考查一元一次不等式组的定义及不等式的基本性质.在解题时,学生可以选择不同的策略解决问题,引导学生发散思维,积极思考,培养学生的创新意识和创新能力.试题命制符合《教育部关于加强初中学业水平考试命题工作的意见》中强调的“提高开放性试题的比例”要求,具有一定的趋势.15.解:(1)400;【解法提示】(人).(2)(人),(人),“A”组所对应的圆心角的度数为;(3)(人).答:估计成绩在80分及以上的人数为1950人.16.解:如解图,过点D作的平行线,过点D作的垂线,垂足为点G,过点E作的垂线,垂足为点F.,.,.在中,,,,.在中,,,,.底座的厚度为,点E到桌面的距离为.答:台灯的高(点E到桌面的距离)约为.17.(1)证明:是的弦,是的半径,D为的中点,..,即.是的半径,是的切线;(2)解:如解图,连接.,,即,,设,则.在中,,,解得(负值已舍去),,.在中,,,.在中,,,.在和中,,.【难点点拨】本题属于圆的综合题,涉及了解直角三角形、垂径定理、圆周角定理、全等三角形的判定和性质等知识,解题的关键是找出对应的直角三角形,通过解直角三角形求线段长,并正确寻找全等三角形解决问题,属于中考常考题型.【方法指导】1.切线的证明:①切点不确定时,常过圆心作所证直线的垂线,再证明圆心到直线的距离等于半径.证明圆心到直线的距离等于半径时常用的方法有:方法一:若题中涉及角平分线,利用角平分线上的点到角两边距离相等来证明;方法二:利用全等三角形对应边相等,证得所作垂线等于半径.②切点确定,连半径,证垂直(辅助线作法:连接圆心和切点,构造半径).当图中无90°角或垂直时:方法一:利用等腰三角形“三线合一”的性质证得垂直;方法二:若图中已知直径,则利用“直径所对的角等于90°”构造直角.当图中有90°角或垂直时:方法一:利用等角代换证得垂直;方法二:利用平行线性质证垂直:有与要证的切线垂直的直线,则证明半径与这条直线平行;方法三:利用三角形全等证得垂直:通过证明切线所在的三角形与含90°角的三角形全等.2.在圆中求线段长的几种方法:方法一:若题干中作辅助线后有直角三角形存在,常运用勾股定理;方法二:若题干中含有特殊角(如30°,45°,60°等)或出现三角函数,,等时,一般考虑用三角函数解题;方法三:题目中无直角三角形时,一般考虑利用三角形相似计算线段长度;方法四:运用等面积公式法也可求点到直线的距离.18.解:(1)一次函数的图象过点,,.将代入,得,反比例函数的表达式为.联立解得或;(2)如解图①,设经过点C且平行于直线的直线的表达式为.当直线与反比例函数只有一个交点时,点C到直线的距离最短,此时的面积最小.联立整理得.令,解得.直线经过第二、三、四象限,,即.联立解得,.,,,;解图①(3)①当点P在x轴上时,设点P的坐标为.如解图②,过点A作x轴的垂线,垂足为点M.解图②,,.,,或,点P的坐标为或;②当点P在y轴上时,设点P的坐标为.如解图③,过点A作y轴的垂线,垂足为点N.解图③,,.,,或,点P的坐标为或.综上所述,点P的坐标为或或或.【难点点拨】本题第(3)问的难点在于分类讨论,已知点P在坐标轴上,要分点P在x轴上和点P在y轴上两种情况讨论.当点P在x轴上时,要分点P在点M的左侧和点P在点M的右侧两种情况;当点P在y轴上时,要分点P在点N的上方和点P在点N的下方两种情况.19.1【解析】实数a有异倒数,,,,原式.命题立意本题是一个即时学习问题,给出一个新定义,结合新定义的运算方法考查分式化简,学生在解答时先要理解新的运算法则,在考查学生基础知识的同时,又考查了学生的阅读理解能力和现场学习能力.20.【解析】根据根与系数的关系得,,即①,②,①×2+②得,解得,.【一题多解法】将代入一元二次方程得,解得,一元二次方程为,解方程得,,,.命题立意本题利用一元二次方程根与系数的关系或解一元二次方程均可求解,落实了《义务教育数学课程标准(2022年版)》中“一元二次方程根与系数的关系”的要求,考查了学生学科知识的掌握程度及知识间的灵活运用能力.21.100,110【解析】根据题图中的数字变化规律,,第⑩个图中,,.22.【解析】分别用A,B,C,D表示兴隆湖生态公园、丹景山游道公园、交子公园、活水公园,列表如下:ABCDABCD由上表可知,共有16种等可能的结果,其中小叶和小沐会去同一个公园的情况有4种,(小叶和小沐会去同一个公园).【一题多解法】分别用A,B,C,D表示兴隆湖生态公园、丹景山游道公园、交子公园、活水公园,画树状图如解图:由树状图可知,共有16种等可能的结果,其中小叶和小沐会去同一个公园的情况有4种,(小叶和小沐会去同一个公园).23.【解析】如解图,延长,交于点O.,.,,是等边三角形,,,.过点C作的垂线,垂足为点G,在中,,,,,,,,.过点B作的垂线,使得,连接,.,,,,,.两点之间线段最短,的最小值为,即的最小值为.过点H作的垂线,交的延长线于点M.,,,,,,,即的最小值为.【难点点拨】本题考查线段最值问题,难点在于将转化为,再利用两点之间线段最短得到的最小值为的长,解题的关键是构造直角三角形,利用解直角三角形和相似解决问题.24.解:(1)当时,设,由图象得解得与x之间的函数表达式是(,x取整数),当时,设,由图象得解得与x之间的函数关系是(,x取整数),综上所述,与x之间的函数表达式是(2)设该航班的收入W,当
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论