八年级数学上册章节重点复习考点讲义(北师大版)专题15二元一次方程组的实际应用综合题(原卷版+解析)_第1页
八年级数学上册章节重点复习考点讲义(北师大版)专题15二元一次方程组的实际应用综合题(原卷版+解析)_第2页
八年级数学上册章节重点复习考点讲义(北师大版)专题15二元一次方程组的实际应用综合题(原卷版+解析)_第3页
八年级数学上册章节重点复习考点讲义(北师大版)专题15二元一次方程组的实际应用综合题(原卷版+解析)_第4页
八年级数学上册章节重点复习考点讲义(北师大版)专题15二元一次方程组的实际应用综合题(原卷版+解析)_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题15二元一次方程组的实际应用(综合题)易错点拨易错点拨知识点01:常见的一些等量关系1.和差倍分问题:增长量=原有量×较大量=+多余量,总量=倍数×2.增收节支问题:(1)增长(递减)率公式:原来的量×(1+)=后来的量;原来的量×(1-递减率)=;(2)利润公式:利润=总收入-;利润=售价-成本(或进价)=成本×;标价=成本(或进价)×(1+)

(3)银行利率公式:利息=本金×利率×.

本息和(本利和)=本金+=+本金×利率×期数=本金×(1+).

年利率=×12.月利率=年利率×.细节剖析:增收节支问题常常借助列表分析问题中所蕴涵的数量关系,这种方法清晰明了,能够充分突出解题过程.3.行程问题:

速度×时间=路程.

顺水速度=.

逆水速度=4.数字问题:已知各数位上的数字,写出两位数,三位数等这类问题一般设间接未知数,例如:若一个两位数的个位数字为a,十位数字为b,则这个两位数可以表示为知识点02:实际问题与二元一次方程组1.列方程组解应用题的基本思想列方程组解应用题,是把“未知”转换成的重要方法,它的关键是把联系起来,找出题目中的.一般来说,有几个未知量就必须列出几个方程,所列方程必须满足:①方程两边表示的是:②同类量的要统一;③要相等.2.列二元一次方程组解应用题的一般步骤:设:用两个字母表示问题中的两个;列:列出方程组(分析题意,找出两个,根据列出方程组);解:解方程组,求出;验:检验求得的值是否实际情形;答:写出答案.细节剖析:(1)解实际应用问题必须写“”,而且在写答案前要根据,检查求得的结果是否合理,不符合题意的解应该舍去;两步,都要写清;(3)一般来说,设就应该列出几个方程并组成方程组.易错题专训易错题专训一.选择题1.(2022•义乌市模拟)某商场按定价销售某种商品时,每件可获利45元;按定价的8.5折销售该商品8件与将定价降低35元销售该商品12件所获利润相等.该商品的进价、定价分别是()A.95元,180元 B.155元,200元 C.100元,120元 D.150元,125元2.(2023秋•福田区校级期末)如图,用12块形状和大小均相同的小长方形纸片拼成一个宽是60厘米的大长方形,则每个小长方形的周长是()A.60厘米 B.80厘米 C.100厘米 D.120厘米3.(2022春•婺城区期末)《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1,图2.图中各行从左到右列出的算筹数分别表示未知数x,y的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是,在图2所示的算筹图中有一个图形被墨水覆盖了,如果图2所表示的方程组中x的值为3,则被墨水所覆盖的图形为()A.| B.|| C.||| D.||||4.(2020秋•项城市期末)如图,利用两块相同的长方体木块(阴影部分)测量一件长方体物品的高度,首先按左图方式放置,再按右图方式放置,测量的数据如图,则长方体物品的高度是()A.73cm B.74cm C.75cm D.76cm5.(2020秋•项城市期末)小明步行速度为5千米/时,骑车速度为15千米/时.如果小明先骑车2小时,然后步行3小时,那么他的平均速度是()A.5千米/时 B.9千米/时 C.10千米/时 D.15千米/时6.(2020•绍兴)同型号的甲、乙两辆车加满气体燃料后均可行驶210km,它们各自单独行驶并返回的最远距离是105km.现在它们都从A地出发,行驶途中停下来从甲车的气体燃料桶抽一些气体燃料注入乙车的气体燃料桶,然后甲车再行驶返回A地,而乙车继续行驶,到B地后再行驶返回A地.则B地最远可距离A地()A.120km B.140km C.160km D.180km二.填空题7.(2022春•开州区月考)重阳佳节来临之际,某糕点店对桂圆味,核桃味、绿豆味重阳糕(分别记为A、B、C)进行混装,推出了甲、乙两种盒装重阳糕,盒装重阳糕的成本是盒中所有A、B、C的成本与盒装包装成本之和,每盒甲装有6个A,2个B,2个C,每盒乙装有2个A,4个B,4个C,每盒甲中所有A、B、C的成本之和是1个A成本的15倍,每盒乙的盒装包装成本是每盒甲的盒装包装成本的倍.每盒乙的利润率为20%,每盒乙的售价比每盒甲的售价高20%.当该店销售这两种盒装重阳糕的总销售额为31000元,总利润率为24%时,销售甲种盒装重阳糕的总利润是元.8.(2023•邵阳)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?意思是:几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价值是多少?该问题中物品的价值是钱.9.(2023•绍兴)我国明代数学读本《算法统宗》有一道题,其题意为:客人一起分银子,若每人7两,还剩4两;若每人9两,则差8两.银子共有两.10.(2020秋•黄岛区期末)如图,是由7块颜色不同的正方形组成的长方形,已知中间小正方形的边长为1,则这个长方形的面积为.11.(2018秋•海曙区期末)如图,两个正方形的边长分别为4,3,两阴影部分的面积分别为a,b(a>b),则a﹣b等于.(2023春•奉化区校级期末)学生问老师:“您今年多大了”老师风趣地说:“我像你这么大时,你刚1岁;你到我这么大时,我已37岁了”.那么老师现在的年龄是岁.三.解答题13.(2023秋•砚山县期末)疫情期间为保护学生和教师的健康,某学校储备“抗疫物资”,用19000元购进甲、乙两种医用口罩共计900盒,甲、乙两种口罩的售价分别是20元/盒,25元/盒.(1)求甲、乙两种口罩各购进了多少盒?(2)现已知甲、乙两种口罩的数量分别是20个/盒,25个/盒,按照市教育局要求,学校必须储备足够使用10天的口罩,该校师生共计900人,每人每天2个口罩,问购买的口罩数量是否能满足市教育局的要求?14.(2022•历下区模拟)某厂计划生产A,B两种产品若干件,已知两种产品的成本价和销售价如表:类别价格A种产品B种产品成本价(元/件)400300销售价(元/件)560450(1)第一次工厂用220000元资金生产了A,B两种产品共600件,求两种产品各生产多少件?(2)第二次工厂生产时,工厂规定A种产品生产数量不得超过B种产品生产数量的一半.工厂计划生产两种产品共3000件,应如何设计生产方案才能获得最大利润,最大利润是多少?15.(2022•高唐县二模)在期末一节复习课上,八年(一)班的数学老师要求同学们列二元一次方程组解下列问题:在我市“精准扶贫”工作中,甲、乙两个工程队先后接力为扶贫村庄修建3000m的村路,甲队每天修建150m,乙队每天修建200m,共用18天完成.(1)粗心的张红同学,根据题意,列出的两个二元一次方程,等号后面忘记写数据,得到了一个不完整的二元一次方程组,张红列出的这个不完整的方程组中未知数p表示的是,未知数q表示的是;张红所列出正确的方程组应该是;(2)李芳同学的思路是想设甲工程队修建了xm村路,乙工程队修建了ym村路.下面请你按照李芳的思路,求甲、乙两个工程队分别修建了多少天?16.(2022春•龙凤区期末)某景点的门票价格如下表:购票人数(人)1~5051~99100以上(含100)门票单价(元)484542(1)某校七年级1、2两个班共有102人去游览该景点,其中1班人数少于50人,2班人数多于50人且少于100人.如果两班都以班为单位单独购票,则一共支付4737元,两个班各有多少名学生?(2)该校八、九年级自愿报名浏览该景点,其中八年级的报名人数不超过50人,九年级的报名人数超过50人,但不超过80人.若两个年级分别购票,总计支付门票费4914元;若合在一起作为一个团体购票,总计支付门票费4452元,问八年级、九年级各报名多少人?17.(2022•渠县二模)为了保护环境,某市公交公司决定购买一批共10台全新的混合动力公交车,现有A、B两种型号,其中每台的价格,年省油量如表:AB价格(万元/台)ab节省的油量(万升/年•台)2.42经调查,购买一台A型车比购买一台B型车多20万元,购买2台A型车比购买3台B型车少60万元(1)请求出a和b的值;(2)若购买这批混合动力公交车每年能节省22.4万升汽油,求购买这批混合动力公交车需要多少万元?18.(2022春•武冈市期末)某景点的门票价格规定如表购票人数1﹣50人51﹣100人100人以上每人门票价12元10元8元某校八年(1)(2)两班共102人去游览该景点,其中(1)班不足50人,(2)班多于50人,如果两班都以班为单位分别购票,则一共付款1118元(1)两班各有多少名学生?(2)如果你是学校负责人,你将如何购票?你的购票方法可节省多少钱?19.(2023•任城区校级三模)目前,新型冠状病毒在我国虽可控可防,但不可松懈,某校欲购置规格分别为300ml和500ml的甲、乙两种免洗手消毒液若干瓶,已知购买2瓶甲和1瓶乙免洗手毒液需要55元,购买3瓶甲和4瓶乙免洗手消毒液需要145元.(1)求甲、乙两种免洗手消毒液的单价;(2)为节约成本,该校购买散装免洗手消毒液进行分装,现需将9.6L的免洗手消毒液全部装入最大容量分别为300ml和500ml的两种空瓶中(每瓶均装满),若分装时平均每瓶需损耗20ml,请问如何分能使总损耗最小,求出此时需要的两种空瓶的数量.20.(2022•澄迈县模拟)有两块试验田,原来可产花生470千克,改用良种后共产花生532千克,已知第一块田的产量比原来增加16%,第二块田的产量比原来增加10%,问这两块试验田改用良种后,各增产花生多少千克?专题15二元一次方程组的实际应用(综合题)易错点拨易错点拨知识点01:常见的一些等量关系1.和差倍分问题:增长量=原有量×增长率较大量=较小量+多余量,总量=倍数×倍量.2.增收节支问题:(1)增长(递减)率公式:原来的量×(1+增长率)=后来的量;原来的量×(1-递减率)=后来的量;(2)利润公式:利润=总收入-总支出;利润=售价-成本(或进价)=成本×利润率;标价=成本(或进价)×(1+利润率)

(3)银行利率公式:利息=本金×利率×期数.

本息和(本利和)=本金+利息=本金+本金×利率×期数=本金×(1+利率×期数).

年利率=月利率×12.月利率=年利率×.细节剖析:增收节支问题常常借助列表分析问题中所蕴涵的数量关系,这种方法清晰明了,能够充分突出解题过程.3.行程问题:

速度×时间=路程.

顺水速度=静水速度+水流速度.

逆水速度=静水速度-水流速度.4.数字问题:已知各数位上的数字,写出两位数,三位数等这类问题一般设间接未知数,例如:若一个两位数的个位数字为a,十位数字为b,则这个两位数可以表示为10b+a.知识点02:实际问题与二元一次方程组1.列方程组解应用题的基本思想列方程组解应用题,是把“未知”转换成“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的等量关系.一般来说,有几个未知量就必须列出几个方程,所列方程必须满足:①方程两边表示的是同类量:②同类量的单位要统一;③方程两边的数要相等.2.列二元一次方程组解应用题的一般步骤:设:用两个字母表示问题中的两个未知数;列:列出方程组(分析题意,找出两个等量关系,根据等量关系列出方程组);解:解方程组,求出未知数的值;验:检验求得的值是否正确和符合实际情形;答:写出答案.细节剖析:(1)解实际应用问题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的解应该舍去;(2)“设”、“答”两步,都要写清单位名称;(3)一般来说,设几个未知数就应该列出几个方程并组成方程组.易错题专训易错题专训一.选择题1.(2022•义乌市模拟)某商场按定价销售某种商品时,每件可获利45元;按定价的8.5折销售该商品8件与将定价降低35元销售该商品12件所获利润相等.该商品的进价、定价分别是()A.95元,180元 B.155元,200元 C.100元,120元 D.150元,125元【易错思路引导】设每件商品定价x元,进价y元,由题意表示出销售8件和销售12件的利润,进而列出方程组,求出方程组的解即可.【规范解答】解:设每件商品定价x元,进价y元,根据题意得:,解得:,即该商品每件进价155元,定价每件200元,故选:B.【考察注意点】本题考查了二元一次方程的应用,找出正确等量关系,列出二元一次方程组是解题的关键.2.(2023秋•福田区校级期末)如图,用12块形状和大小均相同的小长方形纸片拼成一个宽是60厘米的大长方形,则每个小长方形的周长是()A.60厘米 B.80厘米 C.100厘米 D.120厘米【易错思路引导】设小长方形地砖的长为x厘米,宽为y厘米,由大长方形的宽为60厘米,即可得出关于x、y的二元一次方程组,解之即可得出结论.【规范解答】解:设小长方形地砖的长为x厘米,宽为y厘米,根据题意得:,解得:,则每个小长方形的周长=2(x+y)=120(厘米),故选:D.【考察注意点】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.3.(2022春•婺城区期末)《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1,图2.图中各行从左到右列出的算筹数分别表示未知数x,y的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是,在图2所示的算筹图中有一个图形被墨水覆盖了,如果图2所表示的方程组中x的值为3,则被墨水所覆盖的图形为()A.| B.|| C.||| D.||||【易错思路引导】设被墨水所覆盖的图形表示的数据为a,根据题意列出方程组,把x=3代入,求得a的值便可.【规范解答】解:设被墨水所覆盖的图形表示的数据为a,根据题意得,,把x=3代入,得由③得,y=5,把y=5代入④得,12+5a=27,∴a=3,故选:C.【考察注意点】本题主要考查了二元一次方程组的应用,此题是一道材料分析题,先要读懂材料所给出的用算筹表示二元一次方程组的方法,再解方程组.4.(2020秋•项城市期末)如图,利用两块相同的长方体木块(阴影部分)测量一件长方体物品的高度,首先按左图方式放置,再按右图方式放置,测量的数据如图,则长方体物品的高度是()A.73cm B.74cm C.75cm D.76cm【易错思路引导】设长方体木块的长为xcm,宽为ycm,长方体物品的高为acm,由图中数据建立方程组求出其解即可得出结论.【规范解答】解:设长方体木块的长为xcm,宽为ycm,长方体物品的高为acm,由题意得:,两式相加得:2a=150,解得:a=75(cm),故选:C.【考察注意点】本题考查了二元一次方程组的应用,理解题意,列出方程组是解题的关键.5.(2020秋•项城市期末)小明步行速度为5千米/时,骑车速度为15千米/时.如果小明先骑车2小时,然后步行3小时,那么他的平均速度是()A.5千米/时 B.9千米/时 C.10千米/时 D.15千米/时【易错思路引导】设小明走的总路程为x千米,平均速度是为y千米/时,由题意列出二元一次方程组,解方程组即可.【规范解答】解:设小明走的总路程为x千米,平均速度是为y千米/时,由题意得:,解得:,即小明的平均速度是9千米/时;方法二:设小明的平均速度是为y千米/时,由题意得:(2+3)y=2×15+3×5,解得:y=9,即小明的平均速度是9千米/时;故选:B.【考察注意点】本题考查了二元一次方程组的应用;设出未知数,列出二元一次方程组是解题的关键.6.(2020•绍兴)同型号的甲、乙两辆车加满气体燃料后均可行驶210km,它们各自单独行驶并返回的最远距离是105km.现在它们都从A地出发,行驶途中停下来从甲车的气体燃料桶抽一些气体燃料注入乙车的气体燃料桶,然后甲车再行驶返回A地,而乙车继续行驶,到B地后再行驶返回A地.则B地最远可距离A地()A.120km B.140km C.160km D.180km【易错思路引导】设甲行驶到C地时返回,到达A地燃料用完,乙行驶到B地再返回A地时燃料用完,根据题意得关于x和y的二元一次方程组,求解即可.【规范解答】解:设甲行驶到C地时返回,到达A地燃料用完,乙行驶到B地再返回A地时燃料用完,如图:设AB=xkm,AC=ykm,根据题意得:,解得:.∴乙在C地时加注行驶70km的燃料,则AB的最大长度是140km.或者:设AC=ykm即可,从甲车的角度考虑问题,甲车给乙车注入燃料,要想最远,需满足以下两个条件:①注满乙车;②刚好够甲车从C回到A.从A到C,甲、乙两车都行驶了AC,即乙车行驶ykm,也即甲车注入燃料量可行驶ykm,注入后甲车剩余油量可行驶ykm(刚好返回A地),所以对于甲车,y+y+y=210,所以y=70.从乙车角度,从C出发是满燃料,所以AB为:105+70÷2=140(km).故选:B.【考察注意点】本题考查了二元一次方程组在行程问题中的应用,理清题中的数量关系正确列出方程组是解题的关键.二.填空题7.(2022春•开州区月考)重阳佳节来临之际,某糕点店对桂圆味,核桃味、绿豆味重阳糕(分别记为A、B、C)进行混装,推出了甲、乙两种盒装重阳糕,盒装重阳糕的成本是盒中所有A、B、C的成本与盒装包装成本之和,每盒甲装有6个A,2个B,2个C,每盒乙装有2个A,4个B,4个C,每盒甲中所有A、B、C的成本之和是1个A成本的15倍,每盒乙的盒装包装成本是每盒甲的盒装包装成本的倍.每盒乙的利润率为20%,每盒乙的售价比每盒甲的售价高20%.当该店销售这两种盒装重阳糕的总销售额为31000元,总利润率为24%时,销售甲种盒装重阳糕的总利润是2500元.【易错思路引导】设A的单价为x元,B的单价为y元,C的单价为z元,当销售这两种盒装重阳糕的销售利润率为24%时,该店销售甲的销售量为a盒,乙的销售量为b盒,甲每盒装的重阳糕的成本是15x=6x+2y+2z,即y+z=4.5x,乙每盒装的重阳糕的成本是2x+4y+4z=2x+4(y+z)=20x,得出乙每盒的成本是甲每盒的成本的,设甲每盒的成本为m,则乙每盒的成本为m,乙每盒的售价为1.6m,求出甲每盒的售价为m,根据甲乙的利润得(m﹣m)a+(1.6m﹣m)b=(ma+bm)×24%,得出b=a,由ma+1.6mb=31000,解得ma=7500,即可得出结果.【规范解答】解:设A的单价为x元,B的单价为y元,C的单价为z元,当销售这两种盒装重阳糕的销售利润率为24%时,该店销售甲的销售量为a盒,乙的销售量为b盒,甲每盒装的重阳糕的成本是:15x=6x+2y+2z,化简得:y+z=4.5x,乙每盒装的重阳糕的成本是:2x+4y+4z=2x+4(y+z)=2x+4×4.5x=20x,∵=,∴乙每盒的成本是甲每盒的成本的,设甲每盒的成本为m,则乙每盒的成本为m,乙每盒的售价为:m(1+20%)=1.6m,∵每盒乙的售价比每盒甲的售价高20%,∴甲每盒的售价为:=m,根据甲乙的利润得:(m﹣m)a+(1.6m﹣m)b=(ma+bm)×24%,化简得:0.28ma=0.16mb,∴b=a,∵ma+1.6mb=31000,∴ma+1.6m×a=31000,解得:ma=7500,∴销售甲种盒装重阳糕的总利润是:ma﹣ma=ma=×7500=2500(元),故答案为:2500.【考察注意点】本题考查了二元一次方程组的应用、一元一次方程的应用等知识;由题意列出方程是解题的关键.8.(2023•邵阳)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?意思是:几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价值是多少?该问题中物品的价值是53钱.【易错思路引导】设有x人,物品的价值为y钱,由题意:几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.列出方程组,解方程组即可.【规范解答】解:设有x人,物品的价值为y钱,依题意,得:,解得:,即该问题中物品的价值是53钱,故答案为:53.【考察注意点】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.9.(2023•绍兴)我国明代数学读本《算法统宗》有一道题,其题意为:客人一起分银子,若每人7两,还剩4两;若每人9两,则差8两.银子共有46两.【易错思路引导】通过设两个未知数,可以列出银子总数相等的二元一次方程组,本题得以解决.【规范解答】解:设有x人,银子y两,由题意得:,解得,故答案为46.【考察注意点】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.10.(2020秋•黄岛区期末)如图,是由7块颜色不同的正方形组成的长方形,已知中间小正方形的边长为1,则这个长方形的面积为63.【易错思路引导】设左下角的小正方形边长为x,左上角最大的正方形的边长为y,根据矩形的长和宽列出方程组求解即可.【规范解答】解:设左下角的小正方形边长为x,左上角最大的正方形的边长为y,由题意得:,解得:,∴矩形的长=2+2+2+3=9,宽=2+5=7,S矩形=7×9=63,故答案为:63.【考察注意点】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.11.(2018秋•海曙区期末)如图,两个正方形的边长分别为4,3,两阴影部分的面积分别为a,b(a>b),则a﹣b等于7.【易错思路引导】设空白处的面积为x,根据题意列出关系式,相减即可求出a﹣b的值.【规范解答】解:设空白处图形的面积为x,根据题意得:a+x=16,b+x=9,则a﹣b=7.故答案为:7.【考察注意点】此题考查了二元一次方程组,根据题意列出关系式是解本题的关键.12.(2023春•奉化区校级期末)学生问老师:“您今年多大了”老师风趣地说:“我像你这么大时,你刚1岁;你到我这么大时,我已37岁了”.那么老师现在的年龄是25岁.【易错思路引导】本题中明显的等量关系有两个:学生现在的年龄﹣年龄差=1;老师现在的年龄+年龄差=37,据此可以现设学生和老师现在的年龄为x、y,再列方程组求解.【规范解答】解;设老师现在x岁,学生现在y岁,则解得答:老师现在25岁.故填25.【考察注意点】做本题不仅要找准等量关系,更要明白:年龄差是个不变的量.三.解答题13.(2023秋•砚山县期末)疫情期间为保护学生和教师的健康,某学校储备“抗疫物资”,用19000元购进甲、乙两种医用口罩共计900盒,甲、乙两种口罩的售价分别是20元/盒,25元/盒.(1)求甲、乙两种口罩各购进了多少盒?(2)现已知甲、乙两种口罩的数量分别是20个/盒,25个/盒,按照市教育局要求,学校必须储备足够使用10天的口罩,该校师生共计900人,每人每天2个口罩,问购买的口罩数量是否能满足市教育局的要求?【易错思路引导】(1)设甲种口罩购进了x盒,乙种口罩购进了y盒,根据总价=单价×数量,结合用19000元购进甲、乙两种医用口罩共计900盒,列出二元一次方程组,解方程组即可;(2)利用购进口罩的总数量=每盒的个数×购进数量,可求出购进口罩的总数量,利用市教育局的要求数=2×该校师生人数×10,可求出学校需要口罩的总数量,比较后即可得出结论.【规范解答】解:(1)设甲种口罩购进了x盒,乙种口罩购进了y盒,依题意得:,解得:,答:甲种口罩购进了700盒,乙种口罩购进了200盒.(2)20×700+25×200=14000+5000=19000(个),2×900×10=18000(个),∵19000>18000,∴购买的口罩数量能满足市教育局的要求.【考察注意点】本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)利用购进口罩的总数量=每盒的个数×购进数量,求出购进口罩的总数量.14.(2022•历下区模拟)某厂计划生产A,B两种产品若干件,已知两种产品的成本价和销售价如表:类别价格A种产品B种产品成本价(元/件)400300销售价(元/件)560450(1)第一次工厂用220000元资金生产了A,B两种产品共600件,求两种产品各生产多少件?(2)第二次工厂生产时,工厂规定A种产品生产数量不得超过B种产品生产数量的一半.工厂计划生产两种产品共3000件,应如何设计生产方案才能获得最大利润,最大利润是多少?【易错思路引导】(1)设生产了A种产品x件,B种产品y件,由表中数据列出二元一次方程组,解方程组即可;(2)设A种产品生产m件,总利润为w元,由题意:工厂规定A种产品生产数量不得超过B种产品生产数量的一半.列出一元一次不等式,得m≤1000,再求出w=10m+450000,然后由一次函数的性质求解即可.【规范解答】解:(1)设生产了A种产品x件,B种产品y件,由题意得:,解得:,答:生产了A种产品400件,B种产品200件;(2)设A种产品生产m件,由题意得:m≤(3000﹣m),∴m≤1000,设总利润为w元,由题意得:w=(560﹣400)m+(450﹣300)(3000﹣m)=10m+450000,∵10>0,∴w随m的增大而增大,∴当m=1000时,w最大=460000,此时3000﹣m=2000,答:生产A种产品1000件,B种产品2000件,才能获得最大利润,最大利润是460000元.【考察注意点】本题考查了二元一次方程组的应用、一元一次不等式的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找出数量关系,正确列出一元一次不等式.15.(2022•高唐县二模)在期末一节复习课上,八年(一)班的数学老师要求同学们列二元一次方程组解下列问题:在我市“精准扶贫”工作中,甲、乙两个工程队先后接力为扶贫村庄修建3000m的村路,甲队每天修建150m,乙队每天修建200m,共用18天完成.(1)粗心的张红同学,根据题意,列出的两个二元一次方程,等号后面忘记写数据,得到了一个不完整的二元一次方程组,张红列出的这个不完整的方程组中未知数p表示的是甲工程队修建的天数,未知数q表示的是乙工程队修建的天数;张红所列出正确的方程组应该是;(2)李芳同学的思路是想设甲工程队修建了xm村路,乙工程队修建了ym村路.下面请你按照李芳的思路,求甲、乙两个工程队分别修建了多少天?【易错思路引导】(1)根据题意即可完成填空;(2)根据题意列出方程组即可解决问题.【规范解答】解:(1)方程组中未知数p表示的是:甲工程队修建的天数,未知数q表示的是:乙工程队修建的天数,列出正确的方程组应该是:.故答案为:甲工程队修建的天数,乙工程队修建的天数,;(2)设甲工程队修建了xm村路,乙工程队修建了ym村路,根据题意,得,解得,所以甲工程队修建的天数:1800÷150=12(天),乙工程队修建的天数:1200÷200=6(天).答:甲、乙两个工程队分别修建了12天、6天.【考察注意点】本题考查了二元一次方程组的应用,解决本题的关键是根据题意找到等量关系.16.(2022春•龙凤区期末)某景点的门票价格如下表:购票人数(人)1~5051~99100以上(含100)门票单价(元)484542(1)某校七年级1、2两个班共有102人去游览该景点,其中1班人数少于50人,2班人数多于50人且少于100人.如果两班都以班为单位单独购票,则一共支付4737元,两个班各有多少名学生?(2)该校八、九年级自愿报名浏览该景点,其中八年级的报名人数不超过50人,九年级的报名人数超过50人,但不超过80人.若两个年级分别购票,总计支付门票费4914元;若合在一起作为一个团体购票,总计支付门票费4452元,问八年级、九年级各报名多少人?【易错思路引导】(1)设七年级1班有x名学生,2班有y名学生,由题意列出二元一次方程组,解方程组即可;(2)设八年级报名a人,九年级报名b人,分两种情况:①若a+b<100,②若a+b≥100,由题意分别列出方程组,解方程组即可.【规范解答】解:(1)设七年级1班有x名学生,2班有y名学生,由题意得:,解得:,答:七年级1班有49名学生,2班有53名学生;(2)设八年级报名a人,九年级报名b人,分两种情况:①若a+b<100,由题意得:,解得:,(不合题意舍去);②若a+b≥100,由题意得:,解得:,符合题意;答:八年级报名48人,九年级报名58人.【考察注意点】本题主要考查了二元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.注意(2)要分两种情况作答.17.(2022•渠县二模)为了保护环境,某市公交公司决定购买一批共10台全新的混合动力公交车,现有A、B两种型号,其中每台的价格,年省油量如表:AB价格(万元/台)ab节省的油量(万升/年•台)2.42经调查,购买一台A型车比购买一台B型车多20万元,购买2台A型车比购买3台B型车少60万元(1)请求出a和b的值;(2)若购买这批混合动力公交车每年能节省22.4万升汽油,求购买这批混合动力公交车需要多少万元?【易错思路引导】(1)根据“购买一台A型车比购买一台B型车多20万元,购买2台A型车比购买3台B型车少60万元,“即可列出关于a、b的二元一次方程组,求解即可;(2)设购买A型车x台,B型车y台,根据购买的车辆总数为10和购买这批混合动力公交车每年能节省22.4万升汽油,列出方程组,解得x和y的值,再根据总费用=120x+100y,即可得答案.【规范解答】解:(1)根据题意得:解得:.(2)设购买A型车x台,B型车y台,根据题意得:解得:∴120×6+100×4=1120(万元)答:购买这批混合动力公交车需要1120万元.【考察注意点】本题考查了二元一次方程组在实际问题中的应用,根据题意,正确列出方程组,是解题的关键.18.(2022春•武冈市期末)某景点的门票价格规定如表购票人数1﹣50人51﹣100人100人以上每人门票价12元10元8元某校八年(1)(2)两班共102人去游览该景点,其中(1)班不足50人,(2)班多于50人,如果两班都以班为单位分别购票,则一共付款1118元(1)两班各有多少名学生?(2)如果你是学校负责人,你将如何购票?你的购票方法可节省多少钱?【易错思路引导】(1)设一班学生x名,二班学生y名,根据题意可得等量关系:①两班共102人;②(1)班花费+(2)班花费=1118元,根据等量关系列出方程组即可;(2)计算

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论